Evaluation and Optimization Strategies for Forest Landscape Stability in Different Landform Types of the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Forest Landscape Data Extraction
2.2. Forest Landscape Stability Assessment Framework
County | Year | w1 | w2 | w3 |
---|---|---|---|---|
AS | 2000 | 0.883 | 0.398 | 0.165 |
2010 | 0.798 | 0.431 | 0.283 | |
2022 | 0.592 | 0.482 | 0.494 | |
MZ | 2000 | 0.645 | 0.556 | 0.42 |
2010 | 0.565 | 0.449 | 0.441 | |
2022 | 0.574 | 0.46 | 0.459 | |
YC | 2000 | 0.607 | 0.468 | 0.464 |
2010 | 0.792 | 0.494 | 0.294 | |
2022 | 0.787 | 0.546 | 0.179 | |
YS | 2000 | 0.723 | 0.416 | 0.335 |
2010 | 0.733 | 0.422 | 0.274 | |
2022 | 0.707 | 0.374 | 0.303 | |
ZN | 2000 | 0.908 | 0.396 | 0.171 |
2010 | 0.949 | 0.382 | 0.107 | |
2022 | 0.801 | 0.365 | 0.165 | |
BS | 2000 | 0.805 | 0.476 | 0.354 |
2010 | 0.879 | 0.4 | 0.194 | |
2022 | 0.804 | 0.411 | 0.216 |
2.3. Multifunctionality of Forest Landscape
2.3.1. Assessment of Key Ecosystem Services
2.3.2. Simpson’s Diversity Index
2.4. Forest Fragmentation
2.5. Forest Landscape Aboveground Biomass Inversion
2.5.1. Plot Survey and Biomass Calculation
2.5.2. Variable Extraction and Boruta Selection
2.5.3. Machine Learning Models and Performance Evaluation
3. Results
3.1. Forest Landscape SDI and Forest Fragmentation Characteristics
3.2. Forest Landscape AGB Inversion
3.2.1. AGB Estimation Explanatory Variables and Their Importance
3.2.2. Validation of AGB Estimation Accuracy
3.2.3. Spatio–Temporal Dynamics of AGB
3.3. Spatial Distribution Pattern of the Forest Landscape Stability Index
4. Discussion
4.1. Characteristics Analysis of FAD, SDI, and AGB
4.2. Differences in Dynamics of Forest Landscape Stability in Different Geomorphic Types
4.3. Optimization Strategy for Improving Forest Landscape Stability in Loess Plateau
- (1)
- Hierarchical management of forest fragmentation
- (2)
- Multi-objective management to improve SDI
- (3)
- AGB-Driven adaptive management to enhance resilience
- (4)
- Integrating landscape stability into land use planning
4.4. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSI | Landscape Stability Index |
AGB | Aboveground Biomass |
SDI | Simpson’s Diversity Index |
XGBoost | eXtreme Gradient Boosting |
GLCM | Gray-level co-occurrence matrix |
SVM | Support Vector Machine |
RF | Random Forest |
RMSE | Root mean square error |
rRMSE | Relative root mean square error |
DEM | Digital elevation model |
FAD | Forest Area Density |
SWY | Seasonal water yield |
NDR | Nutrient delivery ratio |
SDR | Sediment delivery ratio |
HBQ | Habitat quality |
CS | Carbon storage |
LULC | Land use/cover |
ST | Angular second moment |
CT | Contrast |
CN | Correlation |
DY | Dissimilarity |
EY | Entropy |
HY | Homogeneity |
MN | Mean |
VE | Variance |
YS | Yongshou |
BS | Baishui |
YC | Yanchang |
MZ | Mizhi |
ZN | Zhengning |
AS | Ansai |
References
- Mori, A.S. Ecosystem management based on natural disturbances: Hierarchical context and non-equilibrium paradigm. J. Appl. Ecol. 2011, 48, 280–292. [Google Scholar] [CrossRef]
- Wu, J.; Loucks, O.L. From Balance of Nature to Hierarchical Patch Dynamics: A Paradigm Shift in Ecology. Q. Rev. Biol. 1995, 70, 439–466. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Lahaina, HI, USA, 2006. [Google Scholar]
- Ghazoul, J.; Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 2017, 42, 161–188. [Google Scholar] [CrossRef]
- Milad, M.; Schaich, H.; Bürgi, M.; Konold, W. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manag. 2011, 261, 829–843. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Reyer, C.P. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 624–632. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, X.; Feng, Y.; Labzovskii, L. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation. Ecol. Eng. 2019, 127, 135–150. [Google Scholar] [CrossRef]
- Wen, X.; Deng, X. Current soil erosion assessment in the Loess Plateau of China: A mini-review. J. Clean. Prod. 2020, 276, 123091. [Google Scholar] [CrossRef]
- Chen, H.; Fleskens, L.; Schild, J.; Moolenaar, S.; Wang, F.; Ritsema, C. Impacts of large-scale landscape restoration on spatio-temporal dynamics of ecosystem services in the Chinese Loess Plateau. Landsc. Ecol. 2022, 37, 329–346. [Google Scholar] [CrossRef]
- Qiao, E.; Reheman, R.; Zhou, Z.; Tao, S. Evaluation of landscape ecological security pattern via the “pattern-function-stability” framework in the Guanzhong Plain Urban Agglomeration of China. Ecol. Indic. 2024, 166, 112325. [Google Scholar] [CrossRef]
- Shi, S.; Peng, S.; Lin, Z.; Zhu, Z.; Ma, D.; Yin, Y.; Gong, L. Analysis of ecological environment quality heterogeneity across different landform types in Myanmar and its driving forces. Ecol. Indic. 2024, 168, 112755. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Yang, Q.; Liu, Z.; Li, Y. Extracting frequent sequential patterns of forest landscape dynamics in Fenhe River Basin, Northern China, from landsat time series to evaluate landscape stability. Remote Sens. 2021, 13, 3963. [Google Scholar] [CrossRef]
- Hou, B.; Wei, C.; Liu, X.; Meng, Y.; Li, X. Assessing Forest Landscape Stability Through Automatic Identification of Landscape Pattern Evolution in Shanxi Province of China. Remote Sens. 2023, 15, 545. [Google Scholar] [CrossRef]
- He, H.S.; Gustafson, E.J.; Lischke, H. Modeling forest landscapes in a changing climate: Theory and application. Landsc. Ecol. 2017, 32, 1299–1305. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Liu, H.; Dong, Y.; Wang, F. Nature’s contributions to people responding to landscape stability in a typical karst region, southwest China. Appl. Geogr. 2024, 163, 103175. [Google Scholar] [CrossRef]
- Mina, M.; Messier, C.; Duveneck, M.; Fortin, M.; Aquilué, N. Network analysis can guide resilience-based management in forest landscapes under global change. Ecol. Appl. 2021, 31, e2221. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Melo, F.P.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef]
- Liu, J.; Wilson, M.; Hu, G.; Liu, J.; Wu, J.; Yu, M. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc. Ecol. 2018, 33, 341–352. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, P.; Liu, K.; Zhao, Z. Multiscale Sensitivity Analysis of Landscape Fragmentation in Plantation Forests on the Loess Plateau. Land Degrad. Dev. 2025, 1–15. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Zlatanova, D. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Hayes, D. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zhang, J.; Li, Z. Characteristics and sources of chemical composition in precipitation on the Loess Plateau of China. Sci. Total Environ. 2024, 935, 173401. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Wang, B.; Wang, G.L.; Li, Z.S. Ecological regionalization and overview of the Loess Plateau. Acta Ecol. Sin. 2019, 39, 7389–7397. [Google Scholar] [CrossRef]
- GB/T 21010-2017; Current Land Use Classification. Standards Press of China: Beijing, China, 2017; p. 2.
- Maxwell, S.K.; Schmidt, G.L.; Storey, J.C. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. Int. J. Remote Sens. 2007, 28, 5339–5356. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K.; Fahrig, L.; Ferraz, G.; Hector, A.; Holt, R.D.; Turner, E.C. A large-scale forest fragmentation experiment: The Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3292–3302. [Google Scholar] [CrossRef]
- Van Der Plas, F.; Manning, P.; Soliveres, S.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Fischer, M. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 113, 3557–3562. [Google Scholar] [CrossRef]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2009, 114, 1–27. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, H.M.; Zhang, J.X.; Liu, G.; Fang, Z.; Wang, D.D. Exploring interactions in water-related ecosystem services nexus in Loess Plateau. J. Environ. Manag. 2023, 336, 117550. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Foster, G.R.; Meyer, L.; Onstad, C. An erosion equation derived from basic erosion principles. Trans. ASAE 1977, 20, 678–682. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Zhang, Y.; Liu, B.; Shi, P.; Jiang, Z. Crop cover factor estimating for soil loss prediction. Acta Ecol. Sin. 2001, 21, 1050–1056. [Google Scholar]
- Yan, Z.; Bao, Y.; Liu, B.Y.; Zhang, Q.C.; Yun, X. Effect of different vegetation types on soil erosion by water. J. Integr. Plant Biol. 2003, 45, 1204. [Google Scholar]
- Tang, Q.; Xu, Y.; Bennett, S.J.; Li, Y. Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environ. Earth Sci. 2015, 73, 1715–1724. [Google Scholar] [CrossRef]
- Gao, H.D.; Li, Z.B.; Jia, L.L.; Li, P.; Xu, G.C.; Ren, Z.P.; Pang, G.W.; Zhao, B.H. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. J. Geogr. Sci. 2016, 26, 457–472. [Google Scholar] [CrossRef]
- Bao, Y.B. Temporal and Spatial Change of Ecological Services on Loess Plateau of Shaanxi by InVEST Model. Ph.D. Thesis, Northwest University, Kirkland, WA, USA, 2015. [Google Scholar]
- Hou, Y.; Lü, Y.; Chen, W.P.; Fu, B.J. Temporal variation and spatial scale dependency of ecosystem service interactions: A case study on the central Loess Plateau of China. Landsc. Ecol. 2017, 32, 1201–1217. [Google Scholar] [CrossRef]
- Liang, Y.J.; Wang, B.; Hashimoto, S.; Peng, S.; Yin, Z.; Huang, J. Habitat quality assessment provides indicators for socio-ecological management: A case study of the Chinese Loess Plateau. Environ. Monit. Assess. 2023, 195, 101. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.W.; Fu, B.J.; Ding, G.Y.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607, 1250–1263. [Google Scholar] [CrossRef]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.G.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Liang, Y.J.; Hashimoto, S.; Liu, L.J. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic 2021, 120, 106939. [Google Scholar] [CrossRef]
- Yu, S.C.; Ye, Q.P.; Zhao, Q.X.; Li, Z.; Zhang, M.; Zhu, H.L.; Zhao, Z. Effects of Driving Factors on Forest Aboveground Biomass (AGB) in China’s Loess Plateau by Using Spatial Regression Models. Remote Sens. 2022, 14, 2842. [Google Scholar] [CrossRef]
- Su, C.; Fu, B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Change 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, J.; Han, H.; Cheng, X.; Kang, F. Study on the impact of vegetation change on ecosystem services in the Loess Plateau, China. Ecol. Indic. 2023, 154, 110812. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Wagner, H. Community ecology package. R Package Version 2013, 2, 321–326. [Google Scholar]
- Vogt, P.; Riitters, K.H.; Rambaud, P.; Annunzio, R.; Lindquist, E.; Pekkarinen, A. GuidosToolbox Workbench: Spatial analysis of raster maps for ecological applications. Ecography 2022, 3, e05864. [Google Scholar] [CrossRef]
- Zhen, S.; Zhao, Q.; Liu, S.; Wu, Z.; Lin, S.; Li, J.; Hu, X. Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests 2023, 14, 1135. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H. GuidosToolbox: Universal Digital Image Object Analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- GB/T 43648-2024; Tree Biomass Models and Related Parameters to Carbon Accounting Major Tree Species. Standards Press of China: Beijing, China, 2024; ISBN 155066.1-75087.
- Xie, J.; Li, Z.; Zhou, Z.; Liu, S. A novel bearing fault classification method based on XGBoost: The fusion of deep learning-based features and empirical features. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.E. A study on biotical productivity of Robinia pseudoacacia plantation at Loess Plateau area of north weihe river. Acta Bot. Boreali-Occident. Sin. 1989, 9, 197–201. [Google Scholar]
- Wang, G.; Yue, D.; Niu, T.; Yu, Q. Regulated ecosystem services trade-offs: Synergy research and driver identification in the vegetation restoration area of the middle stream of the Yellow River. Remote Sens. 2022, 14, 718. [Google Scholar] [CrossRef]
- He, J.F.; Guan, J.H.; Zhang, W.H. Land use change and deforestation on the loess plateau. Restor. Dev. Degrad. Loess Plateau China 2014, 10, 111–120. [Google Scholar] [CrossRef]
- Wang, C. An analysis of rural household livelihood change and the regional effect in a western impoverished mountainous area of China. Sustainability 2018, 10, 1738. [Google Scholar] [CrossRef]
- Ning, K.; Chen, J.; Li, Z.; Liu, C.; Nie, X.; Liu, Y.; Hu, X. Land use change induced by the implementation of ecological restoration Programs increases future terrestrial ecosystem carbon sequestration in red soil hilly region of China. Ecol. Indic. 2021, 133, 108409. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, S.; Liu, J.; Zhao, Q.; Zhao, Z. Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms. Ecol. Indic. 2021, 129, 107948. [Google Scholar] [CrossRef]
- Dong, Q.; Su, Y.; Xu, G.; She, L.; Chang, Y. A Fast Operation Method for Predicting Stress in Nonlinear Boom Structures Based on RS–XGBoost–RF Model. Electronics 2024, 13, 2742. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef]
- Deng, Y.; Jia, L.; Guo, Y.; Li, H.; Yao, S.; Chu, L.; Zhang, T. Evaluation of the ecological effects of ecological restoration programs: A case study of the sloping land conversion program on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2022, 19, 7841. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, L.; Tang, Y.; Li, Y.; Zhang, Y.; Zhang, B. Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecol. Indic. 2021, 121, 106985. [Google Scholar] [CrossRef]
- Zhao, H.; He, H.; Wang, J.; Bai, C.; Zhang, C. Vegetation restoration and its environmental effects on the Loess Plateau. Sustainability 2018, 10, 4676. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Shao, M.A.; Luo, Y.; Zhang, C. Estimating regional losses of soil water due to the conversion of agricultural land to forest in China’s Loess Plateau. Ecohydrology 2017, 10, e1851. [Google Scholar] [CrossRef]
- Zhang, X.B.; Zhao, J. Gully land consolidation project in Yan’an is inheritance and development of wrap land dam project on the Loess Plateau. J. Earth Environ. 2015, 6, 261–264. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Qi, Y.; Chen, S.; Zhang, Z. Assessment of Yellow River region cultural heritage value and corridor construction across urban scales: A case study in Shaanxi, China. Sustainability 2024, 16, 1004. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, S.; Li, Z.; Zhang, M.; Yin, D.; Zhao, Z. Growth stages veritably concern the effect of abiotic and stand structure drivers on productivity in black locust planted forests. For. Ecol. Manag. 2025, 578, 122448. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Li, Z.; Yang, L.; Wang, G.; Hou, J.; Xin, Z.; Liu, G.; Fu, B. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecol. Sin. 2019, 39, 7398–7409. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, J.; Liao, X.; Yan, Q.; Liang, G.; Liu, J.; Guan, R. Different arbuscular mycorrhizal fungi established by two inoculation methods improve growth and drought resistance of cinnamomum migao seedlings differently. Biology 2022, 11, 220. [Google Scholar] [CrossRef]
County | Species | Quantity | Tree Hight (m) | DBH (cm) | ||
---|---|---|---|---|---|---|
Average | Range | Average | Range | |||
YS | Robinia pseudoacacia | 41 | 11.78 ± 2.62 | 5.06–15.97 | 12.53 ± 5.07 | 6.18–26.89 |
Pinus tabuliformis | 16 | 11.40 ± 2.41 | 7.27–13.62 | 16.90 ± 3.25 | 10.02–22.72 | |
Platycladus orientalis | 11 | 5.55 ± 1.20 | 3.50–9.58 | 7.04 ± 1.69 | 3.75–9.58 | |
BS | Robinia pseudoacacia | 17 | 10.48 ± 5.25 | 7.76–11.66 | 11.84 ± 1.53 | 6.57–19.56 |
Pinus tabuliformis | 11 | 10.92 ± 2.45 | 6.75–12.56 | 11.64 ± 1.55 | 9.56–12.01 | |
Populus alba | 6 | 7.78 ± 4.23 | 8.52–9.52 | 10.10 ± 2.35 | 7.27–12.74 | |
ZN | Robinia pseudoacacia | 18 | 11.26 ± 1.51 | 6.48–12.14 | 10.65 ± 3.26 | 8.35–15.87 |
Quercus mongolica | 12 | 10.29 ± 2.66 | 8.73–11.94 | 9.87 ± 1.19 | 9.17–11.10 | |
Pinus tabuliformis | 14 | 12.00 ± 2.96 | 7.95–16.41 | 15.18 ± 5.37 | 9.35–15.75 | |
Populus alba | 9 | 7.92 ± 1.01 | 6.45–8.15 | 11.30 ± 0.57 | 9.15–14.25 | |
Larix gmelinii | 11 | 16.42 ± 1.25 | 7.9–22.3 | 19.01 ± 2.64 | 6.5–28.6 | |
AS | Robinia pseudoacacia | 21 | 10.24 ± 2.52 | 5.3–13.8 | 10.57 ± 2.65 | 6.77–28.64 |
Populus alba | 9 | 8.56 ± 1.45 | 7.01–11.08 | 13.94 ± 3.46 | 9.29–26.45 | |
Platycladus orientalis | 10 | 6.89 ± 1.89 | 5.28–8.64 | 12.09 ± 0.78 | 7.95–21.65 | |
Quercus mongolica | 8 | 9.86 ± 5.17 | 7.89–12.56 | 12.06 ± 0.76 | 9.65–19.54 | |
Pinus tabuliformis | 11 | 11.06 ± 3.45 | 7.56–13.52 | 11.99 ± 0.34 | 9.33–11.98 | |
YC | Robinia pseudoacacia | 13 | 10.21 ± 5.12 | 7.44–12.34 | 9.04 ± 1.48 | 5.99–24.58 |
Platycladus orientalis | 8 | 6.32 ± 2.53 | 5.66–8.19 | 11.46 ± 3.14 | 6.29–24.71 | |
Populus alba | 9 | 8.49 ± 3.42 | 6.58–10.68 | 11.71 ± 2.90 | 6.99–36.75 | |
Pinus tabuliformis | 9 | 10.77 ± 1.23 | 6.58–12.37 | 7.92 ± 1.45 | 6.68–13.65 | |
Quercus mongolica | 5 | 9.15 ± 4.75 | 7.56–10.11 | 11.66 ± 2.97 | 7.89–35.95 | |
MZ | Platycladus orientalis | 8 | 9.74 ± 1.92 | 7.06–12.88 | 9.36 ± 1.29 | 6.25–13.25 |
Robinia pseudoacacia | 9 | 10.03 ± 2.56 | 6.28–11.01 | 10.70 ± 3.84 | 6.54–17.56 | |
Pinus tabuliformis | 7 | 9.97 ± 3.02 | 7.77–11.09 | 9.46 ± 2.50 | 6.01–13.59 | |
Populus alba | 6 | 10.86 ± 4.07 | 7.98–12.52 | 15.30 ± 3.04 | 6.98–18.01 |
Species | Allometric Relationships | R2 |
---|---|---|
Robinia pseudoacacia | 0.980 | |
0.974 | ||
0.950 | ||
0.880 | ||
Pinus tabuliformis | 0.912 | |
0.925 | ||
0.952 | ||
Quercus mongolica | 0.948 | |
Populus alba | 0.951 | |
Platycladus orientalis | 0.903 | |
Larix gmelinii | 0.961 |
Classes | Variables and Calculation Formulas |
---|---|
Original band | Blue, Green, Red, Nir, SWIR1, SWIR2 |
Vegetation index | |
Texture variable | Angular second moment (ST), Contrast (CT), Correlation (CN), Dissimilarity (DY), Entropy (EY), Homogeneity (HY), Mean (MN), Variance (VE) |
Topographic variables | Elevation, Aspect, Slope |
Year | AS | MZ | YC | BS | YS | ZN |
---|---|---|---|---|---|---|
2000 | 93.07 | 65.75 | 44.52 | 61.00 | 85.61 | 104.88 |
2010 | 64.36 | 67.07 | 45.16 | 62.13 | 70.75 | 99.45 |
2022 | 95.13 | 88.88 | 80.48 | 78.48 | 82.86 | 118.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, P.; Zhao, Z. Evaluation and Optimization Strategies for Forest Landscape Stability in Different Landform Types of the Loess Plateau. Remote Sens. 2025, 17, 1105. https://doi.org/10.3390/rs17061105
Zhang M, Liu P, Zhao Z. Evaluation and Optimization Strategies for Forest Landscape Stability in Different Landform Types of the Loess Plateau. Remote Sensing. 2025; 17(6):1105. https://doi.org/10.3390/rs17061105
Chicago/Turabian StyleZhang, Mei, Peng Liu, and Zhong Zhao. 2025. "Evaluation and Optimization Strategies for Forest Landscape Stability in Different Landform Types of the Loess Plateau" Remote Sensing 17, no. 6: 1105. https://doi.org/10.3390/rs17061105
APA StyleZhang, M., Liu, P., & Zhao, Z. (2025). Evaluation and Optimization Strategies for Forest Landscape Stability in Different Landform Types of the Loess Plateau. Remote Sensing, 17(6), 1105. https://doi.org/10.3390/rs17061105