Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Methods
2.2.1. Subregion Clustering Methods
2.2.2. Evaluation of the Performance of the Classified Subregions
3. Results and Discussion
3.1. K-Means Based Regionalization of the Arctic Ocean Using the SST Dataset
3.2. Evaluation of Subregional Classification Results for the Arctic Ocean
3.3. Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmermans, M.-L.; Marshall, J. Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate. J. Geophys. Res. Ocean. 2020, 125, e2018JC014378. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- England, M.R.; Eisenman, I.; Lutsko, N.J.; Wagner, T.J.W. The Recent Emergence of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Jansen, E.; Christensen, J.H.; Dokken, T.; Nisancioglu, K.H.; Vinther, B.M.; Capron, E.; Guo, C.; Jensen, M.F.; Langen, P.L.; Pedersen, R.A.; et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Chang. 2020, 10, 714–721. [Google Scholar] [CrossRef]
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef]
- Isaksen, K.; Nordli, Ø.; Ivanov, B.; Køltzow, M.A.Ø.; Aaboe, S.; Gjelten, H.M.; Mezghani, A.; Eastwood, S.; Førland, E.; Benestad, R.E.; et al. Exceptional warming over the Barents area. Sci. Rep. 2022, 12, 9371. [Google Scholar] [CrossRef]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 2018, 8, 634–639. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alkire, M.B.; Bluhm, B.A.; Brown, K.A.; Carmack, E.C.; Chierici, M.; Danielson, S.L.; Ellingsen, I.; Ershova, E.A.; Gårdfeldt, K.; et al. Borealization of the Arctic Ocean in Response to Anomalous Advection From Sub-Arctic Seas. Front. Mar. Sci. 2020, 7, 491. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Pnyushkov, A.V.; Alkire, M.B.; Ashik, I.M.; Baumann, T.M.; Carmack, E.C.; Goszczko, I.; Guthrie, J.; Ivanov, V.V.; Kanzow, T.; et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 2017, 356, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Woodgate, R.A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 2018, 160, 124–154. [Google Scholar] [CrossRef]
- International Hydrographic Organization. Limits of Oceans and Seas; International Hydrographic Organization: Monaco, 1953. [Google Scholar]
- Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P.; Zwally, H.J.; Comiso, J.C. Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res. Ocean. 1999, 104, 20837–20856. [Google Scholar] [CrossRef]
- Meier, W.; Stewart, J. Arctic and Antarctic Regional Masks for Sea Ice and Related Data Products; version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023.
- Peng, G.; Meier, W.N. Temporal and regional variability of Arctic sea-ice coverage from satellite data. Ann. Glaciol. 2018, 59, 191–200. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zeng, J.; Liang, S.; Zhang, P.; Tang, F.; Chen, S.; Ma, X. Spatial and temporal variations of Arctic Sea Ice from 2002–2017. Earth Space Sci. 2020, 7, e2020EA001278. [Google Scholar] [CrossRef]
- Kikuchi, T.; Nishino, S.; Fujiwara, A.; Onodera, J.; Yamamoto-Kawai, M.; Mizobata, K.; Fukamachi, Y.; Watanabe, E. Status and trends of Arctic Ocean environmental change and its impacts on marine biogeochemistry: Findings from the ArCS project. Polar Sci. 2021, 27, 100639. [Google Scholar] [CrossRef]
- Rainville, L.; Lee, C.M.; Woodgate, R.A. Impact of wind-driven mixing in the Arctic Ocean. Oceanography 2011, 24, 136–145. [Google Scholar] [CrossRef]
- Årthun, M.; Onarheim, I.H.; Dörr, J.; Eldevik, T. The Seasonal and Regional Transition to an Ice-Free Arctic. Geophys. Res. Lett. 2021, 48, e2020GL090825. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Yin, X.; Arguez, A.; Graham, G.; Liu, C.; Smith, T.; Zhang, H.-M. Prolonged Marine Heatwaves in the Arctic: 1982−2020. Geophys. Res. Lett. 2021, 48, e2021GL095590. [Google Scholar] [CrossRef]
- Carmack, E.; Polyakov, I.; Padman, L.; Fer, I.; Hunke, E.; Hutchings, J.; Jackson, J.; Kelley, D.; Kwok, R.; Layton, C.; et al. Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic. Bull. Am. Meteorol. Soc. 2015, 96, 2079–2105. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Nielsen, D.M.; Olonscheck, D.; Baehr, J. Arctic marine heatwaves forced by greenhouse gases and triggered by abrupt sea-ice melt. Commun. Earth Environ. 2024, 5, 57. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Emery, W.J. AIR–SEA INTERACTION|Sea Surface Temperature. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Amsterdam, The Netherlands, 2003; pp. 100–109. [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef]
- Lenn, Y.-D.; Fer, I.; Timmermans, M.-L.; MacKinnon, J.A. Chapter 11—Mixing in the Arctic Ocean. In Ocean Mixing; Meredith, M., Naveira Garabato, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 275–299. [Google Scholar]
- Carvalho, K.; Wang, S. Sea surface temperature variability in the Arctic Ocean and its marginal seas in a changing climate: Patterns and mechanisms. Glob. Planet. Change 2020, 193, 103265. [Google Scholar] [CrossRef]
- Behera, P.; Tiwari, M.; Knies, J. Enhanced Arctic Stratification in a Warming Scenario: Evidence From the Mid Pliocene Warm Period. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004182. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST), Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Liu, C.; Freeman, E.; Kent, E.C.; Berry, D.I.; Worley, S.J.; Smith, S.R.; Huang, B.; Zhang, H.-M.; Cram, T.; Ji, Z.; et al. Blending TAC and BUFR Marine In Situ Data for ICOADS Near-Real-Time Release 3.0.2. J. Atmos. Ocean. Technol. 2022, 39, 1943–1959. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Steele, M.; Huang, B.; Zhang, H.-M. Improved Estimation of Proxy Sea Surface Temperature in the Arctic. J. Atmos. Ocean. Technol. 2020, 37, 341–349. [Google Scholar] [CrossRef]
- DiGirolamo, N.; Parkinson, C.; Cavalieri, D.; Gloersen, P.; Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2022. [Google Scholar]
- Copernicus Marine Service. Global Ocean Ensemble Physics Reanalysis, Marine Data Store (MDS) [Data Set]. 2023. Available online: https://doi.org/10.48670/moi-00024 (accessed on 17 March 2025).
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Massachusetts Institute of Technology, Department of Meteorology: Cambridge, MA, USA, 1956; Volume 1. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; Volume 8, pp. 1027–1035. [Google Scholar]
- Fränti, P.; Sieranoja, S. How much can k-means be improved by using better initialization and repeats? Pattern Recognit. 2019, 93, 95–112. [Google Scholar] [CrossRef]
- Caliński, T.; Ja, H. A Dendrite Method for Cluster Analysis. Commun. Stat. Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50, 159–179. [Google Scholar] [CrossRef]
- Patil, C.; Baidari, I. Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth. Data Sci. Eng. 2019, 4, 132–140. [Google Scholar] [CrossRef]
- Hogg, R.V.; Ledolter, J. Engineering Statistics; Macmillan: New York, NY, USA, 1987. [Google Scholar]
- Hochberg, Y.; Tamhane, A.C. Multiple Comparison Procedures; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Razifar, P.; Muhammed, H.H.; Engbrant, F.; Svensson, P.E.; Olsson, J.; Bengtsson, E.; Långström, B.; Bergström, M. Performance of principal component analysis and independent component analysis with respect to signal extraction from noisy positron emission tomography data—A study on computer simulated images. Open Neuroimag. J. 2009, 3, 1–16. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Key, J.R.; Dworak, R. A New Perspective on Four Decades of Changes in Arctic Sea Ice from Satellite Observations. Remote Sens. 2022, 14, 1846. [Google Scholar] [CrossRef]
- Aguilar Colmenero, J.L.; Portela Garcia-Miguel, J. A Regionalization Approach Based on the Comparison of Different Clustering Techniques. Appl. Sci. 2024, 14, 10563. [Google Scholar] [CrossRef]
- Mendler, F.; Koch, B.; Meißner, B.; Voglstätter, C.; Smolinka, T. Evaluation of spatial clustering methods for regionalisation of hydrogen ecosystems. Energy Strategy Rev. 2025, 57, 101627. [Google Scholar] [CrossRef]
- Anselin, L. An Introduction to Spatial Data Science with GeoDa; Taylor & Francis: Abingdon, UK, 2024; Volume 1: Exploring Spatial Data. [Google Scholar]
- Dahlke, S. Rapid Climate Changes in the Arctic Region of Svalbard Aktuelle Klimaänderungen in der Svalbard-Region. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2020. [Google Scholar]
- Watkins, D.M.; Bliss, A.C.; Hutchings, J.K.; Wilhelmus, M.M. Evidence of Abrupt Transitions Between Sea Ice Dynamical Regimes in the East Greenland Marginal Ice Zone. Geophys. Res. Lett. 2023, 50, e2023GL103558. [Google Scholar] [CrossRef]
- Kozlov, I.E.; Atadzhanova, O.A. Eddies in the Marginal Ice Zone of Fram Strait and Svalbard from Spaceborne SAR Observations in Winter. Remote Sens. 2022, 14, 134. [Google Scholar] [CrossRef]
- Ravindran, S.; Pant, V.; Mitra, A.K.; Kumar, A. Spatio-temporal variability of sea-ice and ocean parameters over the Arctic Ocean in response to a warming climate. Polar Sci. 2021, 30, 100721. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Clemente-Colón, P.; Rigor, I.G.; Hall, D.K.; Neumann, G. Seafloor control on sea ice. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2012, 77–80, 52–61. [Google Scholar] [CrossRef]
- Rudels, B.; Carmack, E. Arctic Ocean Water Mass Structure and Circulation. Oceanography 2022, 35, 52–65. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P. Characteristics of the Beaufort Sea High. J. Clim. 2011, 24, 159–182. [Google Scholar] [CrossRef]
- Thorndike, A.S.; Colony, R. Sea ice motion in response to geostrophic winds. J. Geophys. Res. Ocean. 1982, 87, 5845–5852. [Google Scholar] [CrossRef]
- Colony, R.; Thorndike, A. An estimate of the mean field of Arctic sea ice motion. J. Geophys. Res. Ocean. 1984, 89, 10623–10629. [Google Scholar] [CrossRef]
- Long, Z.; Perrie, W. Changes in Ocean Temperature in the Barents Sea in the Twenty-First Century. J. Clim. 2017, 30, 5901–5921. [Google Scholar] [CrossRef]
- Ingvaldsen, R.; Assmann, K.; Primicerio, R.; Fossheim, M.; Polyakov, I.; Dolgov, A. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2021, 2, 874–889. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The Arctic Ocean Estuary. Estuaries Coasts 2012, 35, 353–368. [Google Scholar] [CrossRef]
- Gibson, G.A.; Elliot, S.; Clement Kinney, J.; Piliouras, A.; Jeffery, N. Assessing the Potential Impact of River Chemistry on Arctic Coastal Production. Front. Mar. Sci. 2022, 9, 738363. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Shchuka, S.A.; Semiletov, I.P. Freshwater transport between the Kara, Laptev, and East-Siberian seas. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef]
- Bensi, M.; Nilsen, F.; Ferre, B.; Skogseth, R.; Moskalik, M.; Korhonen, M.; Vogedes, D.; Kovacevic, V.; Paladini, F.; Ingrosso, G.; et al. The Atlantification process in Svalbard: A broad view from the SIOS Marine Infrastructure network. In SESS Report 2024: Svalbard Integrated Arctic Earth Observing System; Runge, E., Neuber, R., Łupikasza, E., Hübner, C., Holmén, K., Eds.; Svalbard Integrated Arctic Earth Observing System (SIOS): Longyearbyen, Norway, 2025; pp. 138–151. [Google Scholar]
- Jaccard, J.; Becker, M.; Wood, G. Pairwise multiple comparison procedures: A review. Psychol. Bull. 1984, 96, 589–596. [Google Scholar] [CrossRef]
- Sumata, H.; de Steur, L.; Divine, D.V.; Granskog, M.A.; Gerland, S. Regime shift in Arctic Ocean sea ice thickness. Nature 2023, 615, 443–449. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Q.; Steele, M.; Schweiger, A. Recent upper Arctic Ocean warming expedited by summertime atmospheric processes. Nat. Commun. 2022, 13, 362. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, J.; Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 2021, 753, 142046. [Google Scholar] [CrossRef]
- He, Q.; Zhu, Z.; Zhao, D.; Song, W.; Huang, D. An Interpretable Deep Learning Approach for Detecting Marine Heatwaves Patterns. Appl. Sci. 2024, 14, 601. [Google Scholar] [CrossRef]
Variable | Source of Variation | Sum of Squares | Degree of Freedom | Mean Squares | F-Ratio | p-Value (Prob > F) |
---|---|---|---|---|---|---|
Winter SST | Between groups | 64,186.9 | 11 | 5835.2 | 9599.1 | 0.00 |
Within groups | 10,914.7 | 17,955 | 0.61 | |||
Total | 75,101.5 | 17,966 | ||||
Summer SST | Between groups | 181,942.5 | 11 | 16,540.2 | 10,530.5 | 0.00 |
Within groups | 28,201.8 | 17,955 | 1.6 | |||
Total | 210,144.2 | 17,966 | ||||
Winter SSS | Between groups | 80,615.5 | 11 | 7328.7 | 3329.5 | 0.00 |
Within groups | 39,521.4 | 17,955 | 2.2 | |||
Total | 120,136.9 | 17,966 | ||||
Summer SSS | Between groups | 165,154.4 | 11 | 15,014.0 | 3532.3 | 0.00 |
Within groups | 76,316.8 | 17,955 | 4.25 | |||
Total | 241,471.2 | 17,966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-E.; Park, J.; Kim, H.-C. Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property. Remote Sens. 2025, 17, 1065. https://doi.org/10.3390/rs17061065
Yoon J-E, Park J, Kim H-C. Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property. Remote Sensing. 2025; 17(6):1065. https://doi.org/10.3390/rs17061065
Chicago/Turabian StyleYoon, Joo-Eun, Jinku Park, and Hyun-Cheol Kim. 2025. "Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property" Remote Sensing 17, no. 6: 1065. https://doi.org/10.3390/rs17061065
APA StyleYoon, J.-E., Park, J., & Kim, H.-C. (2025). Spatial Regionalization of the Arctic Ocean Based on Ocean Physical Property. Remote Sensing, 17(6), 1065. https://doi.org/10.3390/rs17061065