Beyond Salt Mining: Urban Subsidence Hotspots Characterization in Maceió (Brazil), 2016–2024
Highlights
- City-wide SBAS-InSAR deformation map (Sentinel-1, 2016–2024) delineates ~55 km2 of anomalous ground motion, clustered into seven macro-areas (A1–A7) with distinct kinematics and potential for subsidence.
- Beyond the mining central bowl, elongated lagoonal anisotopic zones and diffuse coastal/peri-urban low-gradient zones are mapped and described.
- Subsidence acts as a compound hazard, amplifying flood/coastal-erosion exposure; Monitoring and zoning must extend beyond the mining district.
- The workflow is reproducible/transferable for monitoring other low-lying coastal cities.
Abstract
1. Introduction
2. Study Area
2.1. Climate and Hydrography
2.2. Geomorphology
2.3. Geology
2.4. Soils
3. Materials and Methods
3.1. SAR Data and SBAS-InSAR Processing
3.2. Applicability and Error Behavior Under a Single-Geometry (Descending) Setup
3.3. Hotspot Delineation with Directional Thresholds and Persistence Criteria
3.4. Characterization of Spatial Behaviour (Gradient, Curvature, Anisotropy)
3.5. Thematic Overlays and Exposure/Proximity Metrics
4. Results
4.1. InSAR Products and Municipal Statistical Coverage
4.2. Macro-Areas and Neighborhoods; S1/S5/S10 Extent
4.3. Morphological Classification of Hotspots (Gradient, Curvature, Anisotropy)
4.4. Physical Setting: Geology, Geomorphology, and Soils (Overlay Analyses)
4.5. Abstraction Wells: Count, Density, and Proximity
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SAR | Synthetic Aperture Radar |
| InSAR | Interferometric Synthetic Aperture Radar |
| TS-InSAR | Time-Series Interferometric SAR |
| SBAS | Small Baseline Subset |
| PSI | Persistent Scatterer Interferometry |
| D-InSAR | Differential InSAR |
| LOS | Line of Sight |
| VLOS | Line-of-sight velocity |
| Vz | Vertical velocity (projected from LOS) |
| VV | Vertical–vertical polarization |
| IW/TOPS | Interferometric Wide swath/Terrain Observation with Progressive Scans |
| SLC | Single Look Complex |
| POE-ORB | Precise Orbit Ephemerides (precise orbit) |
| DEM | Digital Elevation Model |
| SRTM | Shuttle Radar Topography Mission |
| MCF | Minimum-Cost-Flow (phase unwrapping) |
| QA | Quality Assurance |
| UTM | Universal Transverse Mercator |
| SIRGAS 2000 | Geocentric Reference System for the Americas (2000) |
| ER | Enrichment Ratio |
| lnER | Natural-log Enrichment Ratio |
| KDE | Kernel Density Estimation |
| AI | Anisotropy Index (λ1/λ2) |
| OLS | Ordinary Least Squares |
| MK | Mann–Kendall (trend test) |
| IQR | Interquartile Range |
| R2 | Coefficient of determination |
| S1/S5/S10 | Operational subsidence classes (−5 < v ≤ −1; −10 < v ≤ −5; v ≤ −10 mm·yr−1) |
| CELMM | Mundaú–Manguaba Estuarine–Lagoon Complex |
| SiBCS | Brazilian Soil Classification System |
| ASF DAAC | Alaska Satellite Facility Distributed Active Archive Center |
| IBGE | Brazilian Institute of Geography and Statistics |
| SGB/CPRM | Geological Survey of Brazil |
| ANA | National Water and Sanitation Agency (Brazil) |
| CNARH | National Register of Water Resources Users |
| SEMARH/AL | Alagoas State Secretariat for Environment and Water Resources |
| EMBRAPA | Brazilian Agricultural Research Corporation |
| PMSB | Municipal Basic Sanitation Plan (Plano Municipal de Saneamento Básico) |
| RSLR | Relative Sea-Level Rise |
| GNSS | Global Navigation Satellite System |
| HMS | Highest-Magnitude Sample |
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Kuniansky, E.L.; Weary, D.J.; Kaufmann, J.E. The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States. Hydrogeol. J. 2016, 24, 613–624. [Google Scholar] [CrossRef]
- Hu, J.; Motagh, M.; Guo, J.; Haghshenas Haghighi, M.; Li, T.; Qin, F.; Wu, W. Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis. Eng. Geol. 2022, 297, 106530. [Google Scholar] [CrossRef]
- Su, G.; Wu, Y.; Zhan, W.; Zheng, Z.; Chang, L.; Wang, J. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China Plain during the past six decades. J. Hydrol. 2021, 600, 126678. [Google Scholar] [CrossRef]
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Haghshenas Haghighi, M.; Motagh, M. Uncovering the impacts of depleting aquifers: A remote sensing analysis of land subsidence in Iran. Sci. Adv. 2024, 10, eadk3039. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Ye, S. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Duque, S.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Fergason, K.C.; Rucker, M.L.; Panda, B.B. Methods for monitoring land subsidence and earth fissures in the Western USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 361–366. [Google Scholar] [CrossRef]
- Massonnet, D.; Souyris, J.-C. Imaging with Synthetic Aperture Radar; EPFL Press: Lausanne, Switzerland; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Ma, J.; Ahmad, I.; Asghar, A.; Khan, J. PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City, Pakistan. Remote Sens. 2022, 14, 3950. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Cano, E.; Dixon, T.H.; Miralles-Wilhelm, F.; Díaz-Molina, O.; Sánchez-Zamora, O.; Carande, R.E. Space geodetic imaging of rapid ground subsidence in Mexico City. GSA Bull. 2008, 120, 1556–1566. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Aobpaet, A.; Cuenca, M.C.; Hooper, A.; Trisirisatayawong, I. InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote Sens. 2013, 34, 2969–2982. [Google Scholar] [CrossRef]
- Lees, M.; Knight, R. Quantification of record-breaking subsidence in California’s San Joaquin Valley. Commun. Earth Environ. 2024, 5, 677. [Google Scholar] [CrossRef]
- Liu, G.; Luo, X.; Chen, Q.; Huang, D.; Ding, X. Detecting land subsidence in Shanghai by PS networking InSAR. Sensors 2008, 8, 4725–4741. [Google Scholar] [CrossRef]
- Damoah-Afari, P.; Ding, X.; Li, Z.; Lu, Z.; Omura, M. Six years of land subsidence in Shanghai revealed by JERS-1 SAR data. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar] [CrossRef]
- Neely, W.R.; Borsa, A.A.; Burney, J.A.; Levy, M.C.; Silverii, F.; Sneed, M. Characterization of groundwater recharge and flow in California’s San Joaquin Valley from InSAR. Water Resour. Res. 2021, 57, e2020WR028451. [Google Scholar] [CrossRef]
- Garg, S.; Motagh, M.; Indu, J.; Karanam, V. Tracking hidden crisis in India’s capital from space. Sci. Rep. 2022, 12, 22434. [Google Scholar] [CrossRef]
- Caló, F.; Notti, D.; Galve, J.P.; Abdikan, S.; Görüm, T.; Pepe, A.; Balik Şanli, F. Dinsar-Based detection of land subsidence and correlation with groundwater depletion in Konya Plain, Turkey. Remote Sens. 2017, 9, 83. [Google Scholar] [CrossRef]
- Motagh, M.; Shamshiri, R.; Haghshenas Haghighi, M.; Wetzel, H.-U.; Akbari, B.; Nahavandchi, H.; Roessner, S.; Arabi, S. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 2017, 218, 134–151. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Z.; Wang, C.; Tang, Y.; Fu, Q. Time Series InSAR three-dimensional displacement for coal-mining subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhu, Z.; Cao, H.; Li, S.; Du, X. Decision-making fusion of InSAR and offset-tracking in mining areas. Front. Earth Sci. 2022, 10, 962362. [Google Scholar] [CrossRef]
- Jiang, X.; Min, X.; Ye, T.; Li, X.; Hu, X. Monitoring the subsidence at different periods of a mining area using D-InSAR. Geocarto Int. 2023, 38, 2215730. [Google Scholar] [CrossRef]
- Lima, T.A.S.; Coelho Simões, S.J. MAPEAMENTO E ANÁLISE DAS SUBSIDÊNCIAS NO BRASIL. Geo UERJ 2025, 47, 1. [Google Scholar]
- Do Brasil, C.S.G.; C.P.R.M./S.G.B. Estudos Sobre a Instabilidade do Terreno nos Bairros Pinheiro, Mutange, Bebedouro, Maceió (AL): Volume I—Relatório Síntese dos Resultados (Nº 1.). 2019; 41p. Available online: https://rigeo.sgb.gov.br/jspui/handle/doc/21133 (accessed on 17 August 2025).
- Euillades, P.A.; Euillades, L.E.; Rosell, P.; Roa, Y.E. Subsidence in Maceió, Brazil, characterized by DInSAR and inverse modeling. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 313–317. [Google Scholar] [CrossRef]
- Vassileva, M.; Al-Halbouni, D.; Motagh, M.; Walter, T.R.; Dahm, T.; Wetzel, H.U. A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil. Sci. Rep. 2021, 11, 7704. [Google Scholar] [CrossRef]
- Hartwig, M.E.; Gama, F.F.; da Silva, J.L.; Jofré, G.C.; Mura, J.C. The significance of geological structures on the subsidence phenomenon at the Maceió salt dissolution field (Brazil). Acta Geotech. 2023, 18, 5551–5573. [Google Scholar] [CrossRef]
- Mantovani, J.R.; Alcântara, E.; Lima, T.A.S.; Simões, S.J.C. An assessment of ground subsidence from rock salt mining in Maceió (2019–2023) using remotely sensed data. Environ. Chall. 2024, 16, 100983. [Google Scholar] [CrossRef]
- Teixeira, A.C.; Bakon, M.; Perissin, D.; Sousa, J.J. InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sens. 2024, 16, 3806. [Google Scholar] [CrossRef]
- de Holanda, E.P.T.; Badiru, A.I.; Nascimento, F.A.T.; de Araujo Braz, M.C.; Barroso, I.R.S. O Processo De Ocupação Do Solo De Maceió: Do Porto De Jaraguá Ao Plano Diretor. Cad. De Grad.—Ciências Exatas E Tecnológicas-UNIT-ALAGOAS 2016, 3, 11–28. Available online: https://periodicos.grupotiradentes.com/cdgexatas/article/view/3088 (accessed on 12 August 2025).
- Vasconcelos, D.A.L.; de Araujo, L.M.; Ramos, S.P. Turismo de sol y playa y territorio: El destino Maceió, Brasil. PASOS. Rev. Tur. Y Patrim. Cult. 2019, 17, 695–708. [Google Scholar] [CrossRef]
- Bezerra da Silva Cavalcante, I.; Fonseca da Silva, D.; Cavalcanti Borba Brandão, J.C. Análise da variabilidade espaço-temporal da precipitação em Maceió-AL e de suas causas climáticas. Pesqui. Geociências 2023, 49, e123971. [Google Scholar] [CrossRef]
- Gama, W.; Neto, J.V.F.N.; Zanella, M.E.Z. Suscetibilidade E Exposição A Inundações Fluviais Em Bacias Hidrpgráficas: O Caso Do Riacho Do Silva, Maceió, Alagoas. Sociedade E Território 2024, 35. [Google Scholar] [CrossRef]
- Santos, R.J.Q.; Lima, R.C.A.; Ferreira Neto, J.V. A geomorfologia do tabuleiro como consequência do neotectonismo. In Geografia: Espaço, Tempo e Planejamento; Araújo, L.M., Ed.; EDUFAL: Maceió, Brazil, 2004; pp. 255–268. [Google Scholar]
- Lima, I.F. Maceió, a Cidade Restinga: Contribuição ao Estudo Geomorfológico do Litoral Alagoano; EDUFAL: Maceió, Brazil, 1990. [Google Scholar]
- Angulo, R.J.; Lessa, G.C.; de Souza, M.C. A critical review of mid-to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat. Sci. Rev. 2006, 25, 486–506. [Google Scholar] [CrossRef]
- Rodrigues, B.T.; Calheiros, S.Q.C.; Melo, N.A. Potencial de movimento de massa no município de Maceió-Alagoas. Geo. UERJ 2013, 24, 207–227. [Google Scholar] [CrossRef]
- Santos, J.C.; Coutinho, R.Q.; Marques, J.A.F. Typical geotechnical profiles of the main soil deposits found in the Maceió city, Alagoas, from SPT boreholes. Soils Rocks 2022, 45, e2022000122. [Google Scholar] [CrossRef]
- Rossetti, D.F.; Góes, A.M. Marine influence in the Barreiras Formation, State of Alagoas, Northeastern Brazil. An. Acad. Bras. Ciências 2009, 81, 741–755. [Google Scholar] [CrossRef]
- Brito Neves, B.B.; Santos, E.J.; Van Schmus, W.R. Tectonic history of the Borborema Province. In Tectonic Evolution of South America. In Proceedings of the 31st International Geological Congress, Rio de Janeiro, Brazil, 6–17 August 2000; pp. 151–182. [Google Scholar]
- Mabesoone, J.M.; de Castro, C. Desenvolvimento geomorfológico do Nordeste brasileiro. Bol. Núcleo Nordeste Soc. Bras. Geol. 1975, 3, 5–37. [Google Scholar]
- Saldanha, L.A.R.; Cavalcante, A.T.; de Wanderley, P.R.M.; Rocha, F.C. Grupo Barreiras: Contribuição ao seu conhecimento no estado de Alagoas. In Anais do VII Simpósio de Geologia do Nordeste; Sociedade Brasileira de Geologia: Fortaleza, CE, Brazil, 1975; pp. 113–119. [Google Scholar]
- Schaller, H. Revisão estratigráfica da Bacia de Sergipe–Alagoas. Bol. Técnico Petrobras 1969, 12, 21–86. [Google Scholar]
- Figueiredo, A.M.F. Avaliação das Perspectivas Petrolíferas da Bacia Sergipe–Alagoas [Relatório Interno]; Petrobras: Rio de Janeiro, Brazil, 1978; 85p. [Google Scholar]
- Feijó, F.J. Bacias de Sergipe-Alagoas. Bol. Geociências Petrobrás 1994, 8, 149–161. [Google Scholar]
- Falkenheim, F.U.H. Projeto Sergipe–Alagoas [Relatório Interno]; Petrobras: Rio de Janeiro, Brazil, 1984; 53p. [Google Scholar]
- Marques, A.G.; Marques, J.A.F. Prática de fundações no Estado de Alagoas. In Geotecnia no Nordeste; Gusmão, A.D., Filho, J.G., Oliveira, J.T.R., Maia, G.B., Eds.; Editora Universitária da UFPE/ABMS—Núcleo Nordeste: Recife, Brazil, 2005; pp. 247–264. [Google Scholar]
- Cavalcanti, A.C. (Ed.) Diagnóstico Ambiental do Município de Maceió, AL: Levantamento Semidetalhado de solos, Potencial Agroecológico das Terras, Áreas de Risco Para Construção Civil e de Risco de Poluição, Uso Atual das Terras; Embrapa Solos: Recife, Brazil, 2005. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Alsdorf, D. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. SAR interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the Small BAseline Subset (SBAS) algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Luo, P.; Jin, X.; Nie, D.; Liu, Y.; Wei, Y. Deformation Monitoring Based on SBAS-InSAR and Leveling Measurement: A Case Study of the Jing-Mi Diversion Canal in China. Sensors 2024, 24, 3871. [Google Scholar] [CrossRef]
- Raspini, F.; Caleca, F.; Del Soldato, M.; Festa, D.; Confuorto, P.; Bianchini, S. Review of satellite radar interferometry for subsidence analysis. Earth-Sci. Rev. 2022, 235, 104239. [Google Scholar] [CrossRef]
- Jiang, J. Lohman Coherence-guided InSAR deformation analysis in the presence of ongoing land surface changes in the Imperial Valley, California. Remote Sens. Environ. 2021, 253, 112160. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Kyriou, A.; Koukouvelas, I.K.; Tomaras, N.; Lyros, E. UAV, GNSS, and InSAR Data Analyses for Landslide Monitoring in a Mountainous Village in Western Greece. Remote Sens. 2023, 15, 2870. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- Ku, H.H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. Sect. C Eng. Instrum. 1966, 70, 263–273. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Rocca, F. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Milillo, P.; Fielding, E.J.; Schulz, W.H.; Delbridge, B.; Bürgmann, R. COSMO-SkyMed Spotlight Interferometry Over Rural Areas: The Slumgullion Landslide in Colorado, USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2919–2926. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J. Statistical Methods in Water Resources (USGS Techniques and Methods, Book 4, Chap. A3, v2.1); U.S. Geological Survey: Reston, VA, USA, 2020. [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Havazli, E.; Wdowinski, S. Detection threshold estimates for InSAR time series: A simulation of tropospheric delay approach. Sensors 2021, 21, 1124. [Google Scholar] [CrossRef]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Pyper, B.J.; Peterman, R.M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 1998, 55, 2127–2140. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975; ISBN 0852641990. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: Cambridge, MA, USA, 1982; ISBN 0126372403. [Google Scholar]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1118676950. [Google Scholar]
- Wood, J. The Geomorphological Characterisation of Digital Elevation Models. Ph.D. Thesis, University of Leicester, Leicester, UK, 1996. [Google Scholar]
- Weickert, J. Anisotropic Diffusion in Image Processing; B. G. Teubner: Stuttgart, Germany, 1998; ISBN 3519026066. [Google Scholar]
- Herrera, G.; Tomás, R.; Monells, D.; Centolanza, G.; Mallorquí, J.J.; Vicente, F.; Mulas, J. Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng. Geol. 2010, 116, 284–295. [Google Scholar] [CrossRef]
- Burbey, T.J. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol. J. 2002, 10, 525–538. [Google Scholar] [CrossRef]
- Tosi, L.; Da Lio, C.; Teatini, P.; Strozzi, T. Land subsidence in coastal environments: Knowledge advance in the Venice coastland by TerraSAR-X PSI. Remote Sens. 2018, 10, 1191. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2008; ISBN 978-0135052679. [Google Scholar]
- Fernández-Torres, E.; Cabral-Cano, E.; Solano-Rojas, D.; Havazli, E.; Salazar-Tlaczani, L. Land subsidence risk maps and InSAR-based angular distortion structural vulnerability assessment: An example in Mexico City. Proc. IAHS 2020, 382, 583–587. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Ding, P.; Jia, C.; Di, S.; Wu, J.; Wei, R. Analysis and evaluation of land subsidence along linear engineering based on InSAR data. KSCE J. Civ. Eng. 2021, 25, 3477–3491. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.; Zhang, J.; Hou, Z.; Wang, S.; Ding, X. Research on time series InSAR monitoring method for multiple types of surface deformation in mining area. Nat. Hazards 2022, 114, 2479–2508. [Google Scholar] [CrossRef]
- Koenderink, J.J.; van Doorn, A.J. Surface shape and curvature scales. Image Vis. Comput. 1992, 10, 557–564. [Google Scholar] [CrossRef]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; John Wiley & Sons: Chichester, UK, 2000. [Google Scholar] [CrossRef]
- Del Ventisette, C.; Ciampalini, A.; Manunta, M.; Calò, F.; Paglia, L.; Ardizzone, F.; Mondini, A.C.; Reichenbach, P.; Mateos, R.M.; Bianchini, S.; et al. Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sens. 2013, 5, 3896–3917. [Google Scholar] [CrossRef]
- Dantas, M.E.; Mello, L.B.; Goes, H.; Lima, V.R.A.; Gama, W.M. Carta Geomorfológica: Município de Maceió, AL (escala 1:60.000); Serviço Geológico do Brasil—CPRM: Rio de Janeiro, Brazil, 2004.
- Mendes, V.A.; Lima, M.A.B.; Moraes, D.M.F.; de Fátima Lyra Brito, M. Geologia e recursos minerais do estado de Alagoas: Escala 1:250.000; CPRM: Rio de Janeiro, Brazil, 2017; ISBN 978-85-7499-304-1. [Google Scholar]
- Manly, B.F.J.; McDonald, L.; Thomas, D.; McDonald, T.L.; Erickson, W.P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D. Geographic Information Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; Chapman & Hall/CRC: Boca Raton, FL, USA, 2015; ISBN 1482210215/9781482210217. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4614-7617-7. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Oxfordshire, UK, 2018. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman & Hall/CRC: Boca Raton, FL, USA, 1994; ISBN 04125527001. [Google Scholar]
- Sun, H.; Peng, H.; Zeng, M.; Wang, S.; Pan, Y.; Pi, P.; Xue, Z.; Zhao, X.; Zhang, A.; Liu, F. Land subsidence in a coastal city based on SBAS-InSAR monitoring: A case study of Zhuhai, China. Remote Sens. 2023, 15, 2424. [Google Scholar] [CrossRef]
- Whittaker, B.N.; Reddish, D.J. Subsidence: Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherlands, 1989; ISBN 978-0-444-56533-4. [Google Scholar]
- Kratzsch, H. Mining Subsidence Engineering; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar] [CrossRef]
- Malinowska, A.; Hejmanowski, R.; Dai, H.Y. Ground movements modeling applying adjusted influence function. Int. J. Min. Sci. Technol. 2020, 30, 243–249. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Strozzi, T. Natural versus anthropogenic subsidence of Venice. Sci. Rep. 2013, 3, 2710. [Google Scholar] [CrossRef]
- Bock, Y.; Wdowinski, S.; Ferretti, A.; Novali, F.; Fumagalli, A. Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem. Geophys. Geosyst. 2012, 13, Q03023. [Google Scholar] [CrossRef]
- Carbognin, L.; Teatini, P.; Tosi, L. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. J. Mar. Syst. 2004, 51, 345–353. [Google Scholar] [CrossRef]
- Teatini, P.; Tosi, L.; Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Solid Earth 2011, 116, B08407. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resour. Res. 2006, 42, W01406. [Google Scholar] [CrossRef]
- Antonellini, M.; Giambastiani, B.M.S.; Greggio, N.; Bonzi, L.; Calabrese, L.; Luciani, P.; Perini, L.; Severi, P. Processes governing natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. Catena 2019, 172, 76–86. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Rogers, K.; McKee, K.L.; Lovelock, C.E.; Mendelssohn, I.A.; Saintilan, N. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annu. Rev. Mar. Sci. 2016, 8, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C.; Cahoon, D.R.; Lynch, J.C. The surface elevation table–marker horizon method for measuring wetland accretion and elevation dynamics. Methods Biogeochem. Wetl. 2013, 10, 901–917. [Google Scholar]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. (Eds.) Land subsidence in the United States (USGS Circular 1182); U.S. Geological Survey: Reston, VA, USA, 1999. [CrossRef]
- USGS. Cone of depression: Pumping a Well Can Cause Water Level Lowering. Water Science School. 24 July 2018. Available online: https://www.usgs.gov/media/images/cone-depression-pumping-a-well-can-cause-water-level-lowering (accessed on 10 June 2025).
- Wu, Y.-X.; Zhao, M.; Zhou, J.; Zheng, G. Numerical evaluation of the ground response induced by dewatering. Geosci. Front. 2021, 12, 101209. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Song, W.-W.; Xue, X.-L.; Li, M.-K.; Bai, N.; Mei, G.-X. Construction dewatering in a metro station incorporating buttress retaining wall to limit ground settlement: Insights from experimental modelling. Tunn. Undergr. Space Technol. 2021, 116, 104124. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef]
- Zhou, N.; Vermeer, P.A.; Lou, R.; Tang, Y.; Jiang, S. Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Eng. Geol. 2010, 114, 251–260. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef]
- Ohenhen, L.O.; Zhai, G.; Lucy, J.; Werth, S.; Carlson, G.; Khorrami, M.; Shirzaei, M. Land subsidence risk to infrastructure in US metropolises. Nat. Cities 2025, 2, 543–554. [Google Scholar] [CrossRef]
- Parsons, T.; Brink, U. The weight of New York City: Possible contributions to subsidence and relative sea-level rise. Earth’s Future 2023, 11, e2022EF003465. [Google Scholar] [CrossRef]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Zerbini, S. Sea-level rise in Venice: Historic and future trends. Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Ferrarin, C.; Lionello, P.; Orlić, M.; Raicich, F.; Salvadori, G. Venice as a paradigm of coastal flooding under multiple compound drivers. Sci. Rep. 2022, 12, 5754. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef] [PubMed]
- NOAA Office for Coastal Management. Sea Level Rise Viewer. NOAA Digital Coast. 2025. Available online: https://coast.noaa.gov/slr/ (accessed on 24 September 2025).
- Harintaka, H.; Suhadha, A.G.; Syetiawan, A.; Ardha, M.; Rarasati, A. Current land subsidence in Jakarta: A multi-track SBAS InSAR analysis during 2017–2022 using C-band SAR data. Geocarto Int. 2024, 39, 2364726. [Google Scholar] [CrossRef]
- Bott, L.-M.; Schöne, T.; Illigner, J.; Haghshenas Haghighi, M.; Gisevius, K.; Braun, B. Land subsidence in Jakarta and Semarang Bay—The relationship between physical processes, risk perception, and household adaptation. Ocean Coast. Manag. 2021, 211, 105775. [Google Scholar] [CrossRef]
- Agra, S.; Silva , O., Jr. Caracterização da problemática das cheias na bacia do Tabuleiro dos Martins–Maceió/AL. Simpósio Bras. Recur. Hídricos 1999, 13, 1999. [Google Scholar]
- Ferreira Neto, J.V.; dos Santos, R.J.Q.; Wanderley, P.R.B.; de Mendonça Wanderley, P.R.; Cavalcante, A.T. Vulnerabilidade Natural Das Águas Subterrâneas Em Área Do Tabuleiro Do Martins—Maceió—Alagoas—Br. Águas Subterrâneas. 2000. Available online: https://aguassubterraneas.abas.org/asubterraneas/article/view/23921 (accessed on 1 June 2025).
- Bueno Da Fonseca Cardoso, F.; De Oliveira, F.R.; Gonçalves, M.; Soares Do Nascimento, F. Disponibilidade Hídrica Subterrânea Na Região Metropolitana De Maceió-Al. Águas Subterrâneas. 2012. Available online: https://aguassubterraneas.emnuvens.com.br/asubterraneas/article/view/27717 (accessed on 7 July 2025).
- BRK Ambiental. BRK Ambiental Avança com ação de Melhoria nos Poços de Produção de água em Maceió. Available online: https://www.brkambiental.com.br/brk-ambiental-avanca-com-acao-de-melhoria-nos-pocos-de-producao-de-agua-em-maceio (accessed on 28 September 2025).
- MUNICIPAL GOVERNMENT OF MACEIÓ/AL. Plano de Saneamento Básico do Município de Maceió/AL. Fase II—Elaboração do Plano de Saneamento Básico. In Etapa 2—Diagnóstico da Situação do Saneamento Básico e de seus Impactos nas Condições de Vida da População; Produto 2.2—Situação Institucional; Prefeitura Municipal de Maceió: Maceió, Brazil, 2016. Available online: https://www.sedet.maceio.al.gov.br/servicos/pdf/pmsb/fase2/etapa2/2_2.pdf (accessed on 12 October 2025).
- Handwerger, A.L.; Huang, M.H.; Fielding, E.J.; Booth, A.M.; Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 2019, 9, 1569. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Xu, Y.; Kim, J.W.; Gallegos, A.J. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
- Dille, A.; Kervyn, F.; Handwerger, A.L.; d’Oreye, N.; Derauw, D.; Bibentyo, T.M.; Dewitte, O. When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sens. Environ. 2021, 258, 112402. [Google Scholar] [CrossRef]
- Cook, M.E.; Brook, M.S.; Hamling, I.J.; Cave, M.; Tunnicliffe, J.F.; Holley, R. Investigating slow-moving shallow soil landslides using Sentinel-1 InSAR data in Gisborne, New Zealand. Landslides 2023, 20, 427–446. [Google Scholar] [CrossRef]
- ESA (European Space Agency). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19); ESA Training Manual; ESA Publications: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Verde, M.B.L. Conflitos Socioambientais: Estudo de Caso da APA do Catolé e Fernão Velho, Maceió-AL. Master’s Thesis, Universidade Federal de Alagoas, Faculdade de Arquitetura e Urbanismo, Maceió, Brazil, 2010. [Google Scholar]
- Mesri, G.; Ajlouni, M. Engineering properties of fibrous peats. J. Geotech. Geoenviron. Eng. 2007, 133, 850–866. [Google Scholar] [CrossRef]
- Hayashi, H.; Nishimoto, S.; Yamanashi, T. Applicability of settlement prediction method to peaty ground. Soils Found. 2016, 56, 144–151. [Google Scholar] [CrossRef]
- van Asselen, S.; Erkens, G.; Stouthamer, E.; Woolderink, H.A.; Geeraert, R.E.; Hefting, M.M. The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. Sci. Total Environ. 2018, 636, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, N. Solifluction rates, processes and landforms: A global review. Earth-Sci. Rev. 2001, 55, 107–134. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment, 3rd ed.; Discusses Solifluction as a Periglacial Process; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-86588-0. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; Volume 7632, p. 604. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Kruseman, G.P.; De Ridder, N.A.; Verweij, J.M. Analysis and Evaluation of Pumping Test Data, 2nd ed.; Publication 47; International Institute for Land Reclamation and Improvement (ILRI): Wageningen, The Netherlands, 1990; Available online: https://edepot.wur.nl/70972 (accessed on 7 September 2025).
- Hoaglin, D.C.; Mosteller, F.; Tukey, J.W. Understanding Robust and Exploratory Data Analysis; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Cooper, H.H., Jr.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar] [CrossRef]
- Driscoll, F.G. Groundwater and Wells, 3rd ed.; Johnson Screens: New Brighton, MN, USA, 2005. [Google Scholar]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.; Academic Press/Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Altman, D.G.; Bland, J.M. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Linnet, K. Evaluation of regression procedures for methods comparison studies. Clin. Chem. 1993, 39, 424–432. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]


























| Area | Neighborhoods |
|---|---|
| 1 | Bebedouro, Mutange, Bom Parto, Pinheiro, Farol, Chã da Jaqueira, Pitanguinha, Chã de Bebedouro, Gruta de Lourdes |
| 2 | Levada |
| 3 | Pontal da Barra, Trapiche da Barra, Ponta Grossa e Vergel do Lago |
| 4 | Jaraguá, Poço, Pajuçara, Ponta da Terra, Ponta Verde, Jatiúca, Mangabeiras, Cruz das Almas e Jacarecica |
| 5 | St. Amélia, Clima Bom, Tabuleiro dos Martins, Santos Dumont, Cidade Universitária |
| 6 | Fernão Velho |
| 7 | Rio Novo |
| Macro-Area | S1 | S5 | S10 | Total (S1 + S5 + S10) | % of Footprint |
|---|---|---|---|---|---|
| A1 | 4.311 | 1.523 | 2.765 | 8.600 | 15.7% |
| A2 | 0.419 | 0.138 | 0.432 | 0.990 | 1.8% |
| A3 | 0.654 | 0.134 | 0.628 | 1.416 | 2.6% |
| A4 | 15.302 | 1.819 | 0.453 | 17.574 | 32.1% |
| A5 | 19.715 | 3.774 | 0.779 | 24.268 | 44.3% |
| A6 | 0.563 | 0.116 | 0.024 | 0.703 | 1.3% |
| A7 | 0.813 | 0.356 | 0.054 | 1.223 | 2.2% |
| Total | 41.777 | 7.860 | 5.136 | 54.772 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, T.A.S.; Vassileva, M.S.; Xia, Z.; Simões, S.J.C. Beyond Salt Mining: Urban Subsidence Hotspots Characterization in Maceió (Brazil), 2016–2024. Remote Sens. 2025, 17, 3974. https://doi.org/10.3390/rs17243974
Lima TAS, Vassileva MS, Xia Z, Simões SJC. Beyond Salt Mining: Urban Subsidence Hotspots Characterization in Maceió (Brazil), 2016–2024. Remote Sensing. 2025; 17(24):3974. https://doi.org/10.3390/rs17243974
Chicago/Turabian StyleLima, Thyago Anthony Soares, Magdalena Stefanova Vassileva, Zhuge Xia, and Silvio Jorge Coelho Simões. 2025. "Beyond Salt Mining: Urban Subsidence Hotspots Characterization in Maceió (Brazil), 2016–2024" Remote Sensing 17, no. 24: 3974. https://doi.org/10.3390/rs17243974
APA StyleLima, T. A. S., Vassileva, M. S., Xia, Z., & Simões, S. J. C. (2025). Beyond Salt Mining: Urban Subsidence Hotspots Characterization in Maceió (Brazil), 2016–2024. Remote Sensing, 17(24), 3974. https://doi.org/10.3390/rs17243974

