Characterization and Quantification of Methane Emission Plumes and Super-Emitter Detection Across North-Central Brazil Using Hyperspectral Satellite Data
Highlights
- High-resolution hyperspectral satellite data (EMIT and Tanager-1) reveal strong spatial contrasts in landfill CH4 emissions across north-central Brazil, with most sites showing modest plume strengths (106–107 ppm·m3) and a few reaching super-emitter levels (>108 ppm·m3).
- Only three super-emitter events—two at Brasília and one at Marituba—dominated the regional CH4 budget, confirming a heavy-tailed, log-normal distribution of emissions.
- Targeted mitigation at a handful of persistent high-emitting landfills could yield rapid, cost-effective CH4 reductions, substantially contributing to Brazil’s climate commitments under the Paris Agreement and Global Methane Pledge.
- This study demonstrates the capability of next-generation hyperspectral satellites to identify, quantify, and monitor CH4 super-emitters in data-scarce regions, strengthening the role of remote sensing in waste-sector and other facilities’ greenhouse gas management.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Focus and Geographic Scope
2.2. Dataset and Observation Sources
| Site Name | State | Biome | Population | Sector | Samples |
|---|---|---|---|---|---|
| Manaus | Amazonas | Amazon | 4,321,616 | Solid waste | 5 |
| Marituba | Pará | Amazon | 8,711,196 | Solid waste | 5 |
| Ananindeua | Pará | Amazon | 8,711,196 | Solid waste | 1 |
| Macapá | Amapá | Amazon | 806,517 | Solid waste | 3 |
| Boa Vista 1 | Roraima | Amazon | 738,772 | Solid waste | 1 |
| Boa Vista 2 | Roraima | Amazon | 738,772 | Undetermined | 1 |
| Palmas | Tocantins | Cerrado | 1,586,859 | Solid waste | 1 |
| Cuiabá | Mato Grosso | Cerrado | 3,893,659 | Solid waste | 3 |
| Rondonópolis | Mato Grosso | Cerrado | 3,893,659 | Solid waste | 1 |
| Brasilia | Goiás | Cerrado | 7,423,629 | Solid waste | 6 |
| Cocalzinho | Goiás | Cerrado | 7,423,629 | Coal mine | 1 |
| Teresina 1 | Piaui | Cerrado | 3,384,547 | solid waste | 2 |
| Teresina 2 | Piaui | Cerrado | 3,384,547 | solid waste | 1 |
| Três Lagoas | Mato Grosso do sul | Cerrado | 2,924,631 | solid waste | 1 |
| Campo Grande | Mato Grosso do sul | Cerrado | 2,924,631 | solid waste | 6 |
| Dourados | Mato Grosso do sul | Cerrado | 2,924,631 | solid waste | 2 |
2.3. Distribution Characterization
2.4. Adaptive Super-Emitter Detection and Quantification
2.4.1. Data Ingestion and Preprocessing
2.4.2. Adaptive Threshold Selection
2.4.3. Plume Characterization
2.4.4. Super-Emitter Fraction Estimation
2.4.5. Site-Level and Global Analysis and Visualization
3. Results
3.1. Variability in Emission Strength Across Sites
3.2. Diagnostic Plume Concentration Maps
3.3. Persistence of Emissions and Variability in Plume Strength
3.4. Distribution and Super-Emitters Fraction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernández-Amador, O.; Francois, J.F.; Oberdabernig, D.A.; Tomberger, P. The methane footprint of nations: Stylized facts from a global panel dataset. Ecol. Econ. 2020, 170, 106528. [Google Scholar] [CrossRef]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Folberth, G.; O’Connor, F.; Jones, C.; Gedney, N.; Wiltshire, A. Drivers of persistent changes in the global methane cycle under aggressive mitigation action. arXiv 2024. [Google Scholar] [CrossRef]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- Jiang, J.; Yin, D.; Sun, Z.; Ye, B.; Zhou, N. Global trend of methane abatement inventions and widening mismatch with methane emissions. Nat. Clim. Change 2024, 14, 393–401. [Google Scholar] [CrossRef]
- Dunn, J.B.; Salas, S.D.; Chen, Q.; Allen, D.T. Prioritize rapidly scalable methane reductions in efforts to mitigate climate change. Clean Technol. Environ. Policy 2023, 25, 2789–2793. [Google Scholar] [CrossRef]
- Azar, C.; Martín, J.G.; Johansson, D.J.A.; Sterner, T. The social cost of methane. Clim. Change 2023, 176, 71. [Google Scholar] [CrossRef]
- Staniaszek, Z.; Griffiths, P.T.; Folberth, G.A.; O’Connor, F.M.; Abraham, N.L.; Archibald, A.T. The role of future anthropogenic methane emissions in air quality and climate. npj Clim. Atmos. Sci. 2022, 5, 21. [Google Scholar] [CrossRef]
- Laoye, B.J.; Olagbemideu, P.T.; Ogunnusi, T.A.; Akpor, O.B. Environmental and Human Health Impacts of Municipal Solid Wastes Landfill Emissions: A Review. In Proceedings of the 2024 IEEE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON), Ado Ekiti, Nigeria, 26–28 November 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Green, R.O.; Thompson, D.R.; Brodrick, P.G.; Chapman, J.W.; Elder, C.D.; Irakulis-Loitxate, I.; Cusworth, D.H.; Ayasse, A.K.; Duren, R.M.; et al. Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Sci. Adv. 2023, 9, eadh2391. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, M.; Lou, Z.; He, H.; Guo, Y.; Pi, X.; Wang, Y.; Yin, K.; Fei, X. Methane emissions from landfills differentially underestimated worldwide. Nat. Sustain. 2024, 7, 496–507. [Google Scholar] [CrossRef]
- Du, M.; Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy Rev. 2017, 78, 272–279. [Google Scholar] [CrossRef]
- Riman, H.S.; Adie, G.U.; Anake, W.U.; Ana, G.R.E.E. Seasonal methane emission from municipal solid waste disposal sites in Lagos, Nigeria. Sci. Rep. 2022, 12, 18314. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. Landfill source of greenhouse gas emission. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion; Elsevier: Amsterdam, The Netherlands, 2024; pp. 123–145. [Google Scholar] [CrossRef]
- Singh, A.; Tirpude, A.; Mathew, N.; Arfin, T. Gaseous Emissions from Solid Waste Disposal. In Waste Derived Carbon Nanomaterials; American Chemical Society: Washington, DC, USA, 2025; Volume 1, pp. 95–114. [Google Scholar]
- Krautwurst, S.; Gerilowski, K.; Jonsson, H.H.; Thompson, D.R.; Kolyer, R.W.; Iraci, L.T.; Thorpe, A.K.; Horstjann, M.; Eastwood, M.; Leifer, I.; et al. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements. Atmos. Meas. Tech. 2017, 10, 3429–3452. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Duren, R.M.; Thorpe, A.K.; Tseng, E.; Thompson, D.; Guha, A.; Newman, S.; Foster, K.T.; Miller, C.E. Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environ. Res. Lett. 2020, 15, 054012. [Google Scholar] [CrossRef]
- Duren, R.M.; Thorpe, A.K.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.D.; Thompson, D.R.; Conley, S.; Colombi, N.K.; et al. California’s methane super-emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Lou, Z.; Zhang, H.; Hussain, A.; Zhan, L.; Yin, K.; Fang, M.; Fei, X. Underestimated Methane Emissions from Solid Waste Disposal Sites Reveal Missed Greenhouse Gas Mitigation Opportunities. Engineering 2024, 36, 12–15. [Google Scholar] [CrossRef]
- Krause, M.J.; Thoma, E.D.; Bryant, A.; Brantley, H.; MacDonald, M.; Green, R.; Thorneloe, S. A High-Resolution Satellite Survey of Methane Emissions from 60 North American Municipal Solid Waste Landfills. Environ. Sci. Technol. 2025, 59, 15080–15091. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, T.R.; Cusworth, D.H.; Duren, R.M.; Kim, J.; Heckler, J.; Asner, G.P.; Thoma, E.; Krause, M.J.; Heins, D.; Thorneloe, S. Investigating Major Sources of Methane Emissions at US Landfills. Environ. Sci. Technol. 2024, 58, 21545–21556. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Duren, R.M.; Ayasse, A.K.; Jiorle, R.; Howell, K.; Aubrey, A.; Green, R.O.; Eastwood, M.L.; Chapman, J.W.; Thorpe, A.K.; et al. Quantifying methane emissions from United States landfills. Science 2024, 383, 1499–1504. [Google Scholar] [CrossRef]
- Kumar, P.; Caldow, C.; Broquet, G.; Shah, A.; Laurent, O.; Yver-Kwok, C.; Ars, S.; Defratyka, S.; Gichuki, S.W.; Lienhardt, L.; et al. Detection and long-term quantification of methane emissions from an active landfill. Atmos. Meas. Tech. 2024, 17, 1229–1250. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, M.; Huang, X.; Zhang, Y. Evaluation of Methane Emission from Msw Landfills in China, India, and the U.S. From Space Using a Two-Tier Approach. arXiv 2024. [Google Scholar] [CrossRef]
- Behrendt, J.; Smith, S.J.; Yu, S.; Chen, S.; Zhang, H.; Zhu, M.; Williams, J.; Cheng, X.; Dule, A.A.; Li, W.; et al. United States and China Anthropogenic Methane Emissions: A Review of Uncertainties and Collaborative Opportunities. Earth’s Future 2025, 13, e2024EF005298. [Google Scholar] [CrossRef]
- Frankenberg, C.; Thorpe, A.K.; Thompson, D.R.; Hulley, G.; Kort, E.A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; et al. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl. Acad. Sci. USA 2016, 113, 9734–9739. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Araiza, D.; Alvarez, R.A.; Lyon, D.R.; Allen, D.T.; Marchese, A.J.; Zimmerle, D.J.; Hamburg, S.P. Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nat. Commun. 2017, 8, 14012. [Google Scholar] [CrossRef] [PubMed]
- Cusworth, D.; Thorpe, A.; Ayasse, A.; Stepp, D.; Heckler, J.; Asner, G.; Miller, C.; Chapman, J.; Eastwood, M.; Green, R.; et al. Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the U.S. Proc. Natl. Acad. Sci. USA 2022, 119, e2202338119. [Google Scholar] [CrossRef]
- Saunois, M.; Martinez, A.; Poulter, B.; Zhang, Z.; Raymond, P.A.; Regnier, P.; Canadell, J.G.; Jackson, R.B.; Patra, P.K.; Bousquet, P.; et al. Global methane budget 2000–2020. Earth Syst. Sci. Data 2025, 17, 1873–1958. [Google Scholar] [CrossRef]
- Lino, F.A.M.; Ismail, K.A.R.; Castañeda-Ayarza, J.A. Municipal solid waste treatment in Brazil: A comprehensive review. Energy Nexus 2023, 11, 100232. [Google Scholar] [CrossRef]
- Dadario, N.; Gabriel Filho, L.R.A.; Cremasco, C.P.; Santos, F.A.; dos Rizk, M.C.; Mollo Neto, M. Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Lino, F.A.M.; Ismail, K.A.R. Analysis of the potential of municipal solid waste in Brazil. Environ. Dev. 2012, 4, 105–113. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Version 3.34. Geographic Information System. Open-Source Geospatial Foundation Project 2024. Available online: https://www.qgis.org/en/site/ (accessed on 19 September 2025).
- Duren, R.; Cusworth, D.; Ayasse, A.; Howell, K.; Diamond, A.; Scarpelli, T.; Kim, J.; O’neill, K.; Lai-Norling, J.; Thorpe, A.; et al. The Carbon Mapper emissions monitoring system. arXiv 2025. [Google Scholar] [CrossRef]
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- Thompson, D.R.; Green, R.O.; Bradley, C.; Brodrick, P.G.; Mahowald, N.; Dor, E.B.; Bennett, M.; Bernas, M.; Carmon, N.; Chadwick, K.D.; et al. On-orbit calibration and performance of the EMIT imaging spectrometer. Remote Sens. Environ. 2024, 303, 113986. [Google Scholar] [CrossRef]
- Estimativas da População Residente Para os Municípios e Para as Unidades da Federação IBGE. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html (accessed on 7 October 2025).
- Biomas e Sistema Costeiro-Marinho do Brasil, IBGE. Available online: https://www.ibge.gov.br/apps/biomas/#/home (accessed on 7 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 19 September 2025).
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Mehrdad, S.M.; Du, K. Satellite-Based Methane Emission Monitoring: A Review Across Industries. Remote Sens. 2025, 17, 3674. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotlier, G.I.; Miranda, V.F.V.V.d.; Jimenez, J.C. Characterization and Quantification of Methane Emission Plumes and Super-Emitter Detection Across North-Central Brazil Using Hyperspectral Satellite Data. Remote Sens. 2025, 17, 3973. https://doi.org/10.3390/rs17243973
Cotlier GI, Miranda VFVVd, Jimenez JC. Characterization and Quantification of Methane Emission Plumes and Super-Emitter Detection Across North-Central Brazil Using Hyperspectral Satellite Data. Remote Sensing. 2025; 17(24):3973. https://doi.org/10.3390/rs17243973
Chicago/Turabian StyleCotlier, Gabriel I., Vitor F. V. V. de Miranda, and Juan Carlos Jimenez. 2025. "Characterization and Quantification of Methane Emission Plumes and Super-Emitter Detection Across North-Central Brazil Using Hyperspectral Satellite Data" Remote Sensing 17, no. 24: 3973. https://doi.org/10.3390/rs17243973
APA StyleCotlier, G. I., Miranda, V. F. V. V. d., & Jimenez, J. C. (2025). Characterization and Quantification of Methane Emission Plumes and Super-Emitter Detection Across North-Central Brazil Using Hyperspectral Satellite Data. Remote Sensing, 17(24), 3973. https://doi.org/10.3390/rs17243973

