A Global Distribution-Aware Network for Open-Set Hyperspectral Image Classification
Highlights
- Modeling the multimodal distribution of data can effectively enhance classification performance in open-set scenarios.
- The improved uncertainty metric provides an effective measure for identifying out-of-distribution samples.
- Capturing the multimodal nature of data allows the model to better represent intra-class variations, enhancing its generalization to unknown classes.
- The proposed model provides outputs that reliably indicate sample-level confidence, allowing for precise uncertainty quantification.
Abstract
1. Introduction
- (1)
- A novel Global Distribution-Aware framework for accurate open-set HSI classification is designed.
- (2)
- An interpretable model that integrates GAN and MCMC within a Bayesian framework is formed to explore complex multimodal distribution patterns in hyperspectral data.
- (3)
- The uncertainty modeling capability of the Bayesian framework is introduced into open-set HSI classification for the first time, providing a precise and reliable approach to the task.
2. Methodology
2.1. Global Distribution-Aware GAN
2.2. Posterior Inference and Model Optimization
2.3. Uncertainty-Aware Open-Set HSI Classification
3. Experiments
3.1. Dataset Description
3.2. Experimental Setting
4. Experimental Results and Analysis
4.1. Ablation Experiment
4.2. Results and Analysis
4.2.1. Classification Results on the University of Pavia Dataset
4.2.2. Classification Results on the WHU-Hi-LongKou Dataset
4.2.3. Classification Results on the Salinas Dataset
5. Discussion
5.1. Effectiveness of Global Distribution Modeling
5.2. Visualization of the Uncertainty Modeling
5.3. Sensitivity Analysis of Key Parameters
5.4. Model Size and Computational Cost Analysis
5.5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HSI | Hyperspectral image |
| GDAN | Global distribution-aware network |
| GAN | Generative adversarial network |
| SA | Self-attention |
| MCMC | Markov Chain Monte Carlo |
| SVM | Support vector machines |
| PCA | Principal component analysis |
| ICA | Independent component analysis |
| LDA | Linear discriminant analysis |
| CNNs | Convolutional neural networks |
| BNNs | Bayesian neural networks |
| MC | Monte Carlo |
| SGD | Stochastic Gradient Descent |
| AVIRIS | Airborne visible infrared imaging spectrometer |
| SSLR | Spectral-spatial latent recognition |
| SSMLP | Spectral–spatial multiple layer perceptron (MLP)-like network with reciprocal points learning |
| HyperTaFOR | Spatial-Spectral selective transformer |
| FrHSPL | Fractional-domain information-enhanced hyperspherical prototype learning |
| HyperMamba | Spectral–spatial adaptive Mamba for Hyperspectral Image classification |
| OA | Overall Accuracy |
| AA | Average Accuracy |
| K | Kappa Coefficient |
| GDM | Global distribution modeling |
| UQ | Uncertainty quantification |
| MC Dropout | Monte Carlo Dropout |
| FLOPs | Floating point operations |
References
- Chang, C.-I. Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Bishop, C.A.; Liu, J.G.; Mason, P.J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 2011, 32, 2409–2426. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Saleem, Z.; Khan, M.H.; Ahmad, M.; Sohaib, A.; Ayaz, H.; Mazzara, M. Prediction of microbial spoilage and shelf-life of bakery products through hyperspectral imaging. IEEE Access 2020, 8, 176986–176996. [Google Scholar] [CrossRef]
- Khan, M.H.; Saleem, Z.; Ahmad, M.; Sohaib, A.; Ayaz, H.; Mazzara, M. Hyperspectral imaging for color adulteration detection in red chili. Appl. Sci. 2020, 10, 5955. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Okwuashi, O.; Ndehedehe, C.E. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020, 103, 107298. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Huang, H.; Shi, G.; He, H.; Duan, Y.; Luo, F. Dimensionality reduction of hyperspectral imagery based on spatial–spectral manifold learning. IEEE Trans. Cybern. 2019, 50, 2604–2616. [Google Scholar] [CrossRef]
- Beirami, B.A.; Mokhtarzade, M. Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1953–1957. [Google Scholar] [CrossRef]
- Wang, J.; Chang, C.-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1586–1600. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2013, 31, 45–54. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Du, Q. Self-paced joint sparse representation for the classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1183–1194. [Google Scholar] [CrossRef]
- Yuan, H.; Tang, Y.Y. Sparse representation based on set-to-set distance for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2464–2472. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2462–2471. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Lu, Y.; Yuan, H. Hyperspectral image classification based on three-dimensional scattering wavelet transform. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2467–2480. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Xia, X.-G.; Zhang, M.; Gao, C.-Z.; Tao, R. Central attention network for hyperspectral imagery classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8989–9003. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5966–5978. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, G.; Li, X.; Fu, P. Hyperspectral image classification method based on 2D–3D CNN and multibranch feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5776–5788. [Google Scholar] [CrossRef]
- Liang, H.; Bao, W.; Shen, X.; Zhang, X. Spectral–spatial attention feature extraction for hyperspectral image classification based on generative adversarial network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10017–10032. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, J.; Sun, W.; Chen, N.; Du, Q.; Ning, Y.; Su, H. Two-branch attention adversarial domain adaptation network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5540813. [Google Scholar] [CrossRef]
- Yang, X.; Cao, W.; Lu, Y.; Zhou, Y. Hyperspectral image transformer classification networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5528715. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, J.; Kang, X.; Duan, P.; Li, S. Multilayer global spectral–spatial attention network for wetland hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518913. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, X.; Li, S.; Plaza, A. Hyperspectral image classification using groupwise separable convolutional vision transformer network. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5511817. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Y.; Tu, B.; Li, Q.; Li, W. Spatial–spectral transformer with cross-attention for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5537415. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J.; Peng, Y.; Jiang, T. Distance-based hyperspectral open-set classification of deep neural networks. Remote Sens. Lett. 2021, 12, 636–644. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Shi, L.; Li, F.; Xu, T. A prototype network for hyperspectral image open-set classification based on feature invariance and weighted Pearson distance measurement. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5506917. [Google Scholar] [CrossRef]
- Chen, M.; Feng, S.; Zhao, C.; Qu, B.; Su, N.; Li, W.; Tao, R. Fractional Fourier-based frequency-spatial–spectral prototype network for agricultural hyperspectral image open-set classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5514014. [Google Scholar] [CrossRef]
- Xu, H.; Chen, W.; Tan, C.; Ning, H.; Sun, H.; Xie, W. Orientational clustering learning for open-set hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5508605. [Google Scholar] [CrossRef]
- Feng, S.; Wang, S.; Xu, C.; Zhao, C.; Li, W.; Tao, R. Fractional Domain Information Enhanced Hyperspherical Prototype Learning Method for Hyperspectral Image Open-Set Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5515117. [Google Scholar] [CrossRef]
- Yue, J.; Fang, L.; He, M. Spectral-spatial latent reconstruction for open-set hyperspectral image classification. IEEE Trans. Image Process. 2022, 31, 5227–5241. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Zhang, L. Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5085–5102. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Y.; Wang, G.; Li, Z.; Sun, W.; Du, Q. Open Set Domain Adaptation for Hyperspectral Image Classification Based on Reconstruction Discrepancy and Feature Alignment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 24829–24847. [Google Scholar] [CrossRef]
- Ji, F.; Zhao, W.; Wang, Q.; Emery, W.J.; Peng, R.; Man, Y.; Wang, G.; Jia, K. Spectral-spatial evidential learning network for open-set hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5503617. [Google Scholar] [CrossRef]
- Xie, Z.; Duan, P.; Liu, W.; Kang, X. Uncertainty-Aware Prototype Learning for Open-Set Hyperspectral Image Classification. In Proceedings of the 2024 2nd International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA), Changsha, China, 24–27 May 2024; pp. 145–148. [Google Scholar]
- Xie, Z.; Duan, P.; Liu, W.; Kang, X.; Wei, X.; Li, S. Feature consistency-based prototype network for open-set hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 9286–9296. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Zhang, W.; Li, J.; Song, R.; Li, Y. HyperTaFOR: Task-Adaptive Few-Shot Open-Set Recognition With Spatial-Spectral Selective Transformer for Hyperspectral Imagery. IEEE Trans. Image Process. 2025, 34, 4148–4160. [Google Scholar] [CrossRef]
- Pal, D.; Bose, S.; Banerjee, B.; Jeppu, Y. Morgan: Meta-learning-based few-shot open-set recognition via generative adversarial network. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 6295–6304. [Google Scholar]
- Kong, S.; Ramanan, D. Opengan: Open-set recognition via open data generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 813–822. [Google Scholar]
- Pal, D.; Bundele, V.; Sharma, R.; Banerjee, B.; Jeppu, Y. Few-shot open-set recognition of hyperspectral images with outlier calibration network. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 3801–3810. [Google Scholar]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Li, J.; Plaza, A. Active learning with convolutional neural networks for hyperspectral image classification using a new Bayesian approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6440–6461. [Google Scholar] [CrossRef]
- Preston, J.; Basener, W. Modeling Uncertainty in Hyperspectral Image Classification Using Neural Networks with Bayesian Monte Carlo Dropout. In Proceedings of the 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Athens, Greece, 31 October–2 November 2023; pp. 1–6. [Google Scholar]
- Chen, T.; Fox, E.; Guestrin, C. Stochastic gradient hamiltonian monte carlo. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1683–1691. [Google Scholar]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, B.; Wang, R.; Zhang, P.; Dai, M. Spectral–spatial MLP-like network with reciprocal points learning for open-set hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5513218. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Huang, L. Bayesian deep learning for hyperspectral image classification with low uncertainty. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5506916. [Google Scholar] [CrossRef]
- Liu, Q.; Yue, J.; Fang, Y.; Xia, S.; Fang, L. HyperMamba: A Spectral-Spatial Adaptive Mamba for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Alkhatib, M.Q.; Roy, S.K.; Jamali, A. MixerSENet: A Lightweight Framework for Efficient Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2025, 22, 5509805. [Google Scholar] [CrossRef]

















| Module | University of Pavia | WHU-Hi-LongKou | Salinas | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SA | GDM | UQ | ||||||||||||
| × | × | × | 84.99 | 89.00 | 80.18 | 53.01 | 87.99 | 83.28 | 84.11 | 35.87 | 85.11 | 90.73 | 83.45 | 42.37 |
| ✓ | × | × | 85.33 | 89.24 | 80.62 | 54.67 | 88.38 | 83.80 | 84.62 | 37.24 | 86.00 | 91.29 | 84.44 | 50.81 |
| × | ✓ | × | 88.43 | 91.25 | 84.60 | 71.24 | 90.55 | 87.82 | 87.60 | 67.62 | 88.42 | 92.82 | 97.09 | 72.99 |
| × | × | ✓ | 87.13 | 90.47 | 82.93 | 63.27 | 89.71 | 86.32 | 86.46 | 57.14 | 87.08 | 91.97 | 85.62 | 61.01 |
| ✓ | ✓ | × | 89.71 | 92.24 | 86.29 | 75.66 | 90.76 | 88.17 | 87.88 | 70.14 | 88.94 | 93.19 | 87.67 | 74.91 |
| ✓ | × | ✓ | 88.90 | 91.57 | 85.21 | 73.50 | 90.36 | 87.48 | 87.34 | 65.26 | 87.61 | 92.30 | 86.20 | 65.98 |
| × | ✓ | ✓ | 90.64 | 92.76 | 87.48 | 81.86 | 91.46 | 88.91 | 88.78 | 68.89 | 89.74 | 93.69 | 88.56 | 82.44 |
| ✓ | ✓ | ✓ | 90.81 | 91.61 | 87.71 | 84.91 | 92.11 | 90.41 | 89.61 | 73.11 | 90.41 | 94.91 | 89.31 | 89.61 |
| Class | T = 100 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 97.9 ± 0.9 | 95.1 ± 0.6 | 85.7 ± 0.9 | 93.4 ± 0.9 | 89.6 ± 1.7 | 89.2 ± 1.8 | 93.6 ± 1.1 | 93.2 ± 0.7 |
| 2 | 88.6 ± 1.6 | 94.7 ± 0.6 | 73.2 ± 1.2 | 91.3 ± 1.4 | 93.6 ± 0.7 | 73.9 ± 1.5 | 80.4 ± 2.4 | 89.3 ± 0.5 |
| 3 | 96.4 ± 0.7 | 96.4 ± 0.8 | 97.4 ± 0.6 | 96.5 ± 1.0 | 96.3 ± 1.0 | 98.4 ± 0.6 | 99.0 ± 0.5 | 95.9 ± 0.6 |
| 4 | 99.2 ± 0.4 | 99.6 ± 0.2 | 99.2 ± 0.3 | 99.4 ± 0.2 | 99.9 ± 0.1 | 99.8 ± 0.1 | 99.6 ± 0.2 | 98.9 ± 0.1 |
| 5 | 88.0 ± 1.6 | 87.9 ± 1.2 | 97.1 ± 0.6 | 77.4 ± 1.5 | 94.2 ± 0.4 | 97.6 ± 0.3 | 91.2 ± 0.4 | 90.7 ± 2.2 |
| 6 | 89.6 ± 1.8 | 92.6 ± 0.8 | 90.7 ± 0.6 | 88.8 ± 1.7 | 93.7 ± 1.2 | 95.3 ± 0.9 | 84.7 ± 1.2 | 88.3 ± 0.9 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 53.8 ± 0.7 | 49.9 ± 1.4 | 53.1 ± 0.9 | 74.4 ± 0.3 | 73.9 ± 0.2 | 84.9 ± 1.1 |
| 74.2 ± 0.6 | 74.5 ± 0.4 | 81.5 ± 0.4 | 81.9 ± 0.7 | 83.4 ± 0.8 | 87.9 ± 1.0 | 88.4 ± 0.6 | 90.8 ± 0.4 | |
| 80.0 ± 0.6 | 80.9 ± 0.3 | 85.3 ± 0.3 | 85.2 ± 0.6 | 88.6 ± 0.3 | 89.8 ± 0.6 | 88.9 ± 0.5 | 91.6 ± 0.5 | |
| 65.7 ± 0.8 | 66.3 ± 0.5 | 75.8 ± 0.4 | 75.8 ± 0.9 | 78.1 ± 0.9 | 84.0 ± 1.2 | 84.5 ± 0.7 | 87.7 ± 0.5 | |
| Class | T = 200 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 95.7 ± 0.9 | 95.7 ± 0.8 | 91.4 ± 1.1 | 95.5 ± 1.2 | 97.6 ± 0.4 | 94.2 ± 0.7 | 93.0 ± 0.9 | 94.5 ± 0.8 |
| 2 | 90.8 ± 1.6 | 98.3 ± 0.3 | 79.7 ± 0.1 | 99.2 ± 0.4 | 93.4 ± 1.5 | 86.0 ± 1.9 | 92.7 ± 0.7 | 95.3 ± 1.0 |
| 3 | 97.5 ± 1.0 | 98.5 ± 0.4 | 95.6 ± 0.5 | 98.3 ± 0.4 | 96.8 ± 0.5 | 97.9 ± 0.2 | 98.1 ± 0.5 | 98.1 ± 0.6 |
| 4 | 99.8 ± 0.1 | 99.9 ± 0.0 | 99.5 ± 0.3 | 99.6 ± 0.2 | 99.8 ± 0.1 | 99.3 ± 0.3 | 99.9 ± 0.1 | 99.9 ± 0.1 |
| 5 | 94.9 ± 1.1 | 83.7 ± 1.0 | 92.5 ± 0.9 | 84.9 ± 2.6 | 96.6 ± 0.6 | 96.3 ± 0.3 | 99.2 ± 0.2 | 92.3 ± 1.3 |
| 6 | 93.6 ± 0.7 | 95.5 ± 0.6 | 77.4 ± 1.2 | 95.5 ± 1.2 | 95.3 ± 1.2 | 92.1 ± 1.0 | 94.8 ± 0.4 | 94.4 ± 0.6 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 66.1 ± 0.5 | 56.6 ± 1.5 | 68.2 ± 0.8 | 81.3 ± 0.3 | 80.7 ± 0.4 | 94.4 ± 0.8 |
| 74.6 ± 0.6 | 74.8 ± 0.3 | 85.0 ± 0.4 | 86.2 ± 0.7 | 90.7 ± 0.4 | 91.6 ± 0.4 | 91.9 ± 0.4 | 94.6 ± 0.5 | |
| 81.8 ± 0.4 | 81.7 ± 0.2 | 86.0 ± 0.3 | 89.9 ± 0.6 | 92.5 ± 0.5 | 92.4 ± 0.4 | 94.0 ± 0.1 | 95.5 ± 0.2 | |
| 66.4 ± 0.7 | 66.7 ± 0.3 | 80.1 ± 0.5 | 81.6 ± 1.0 | 87.4 ± 0.5 | 88.7 ± 0.5 | 89.2 ± 0.5 | 92.7 ± 0.6 | |
| Class | T = 100 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 98.7 ± 0.4 | 98.3 ± 0.5 | 95.1 ± 1.1 | 99.6 ± 0.1 | 97.6 ± 0.8 | 95.1 ± 0.3 | 97.4 ± 0.5 | 97.1 ± 1.0 |
| 2 | 94.3 ± 1.2 | 98.0 ± 0.3 | 96.5 ± 0.5 | 78.6 ± 0.9 | 99.3 ± 0.3 | 99.6 ± 0.2 | 99.4 ± 0.3 | 88.3 ± 1.8 |
| 3 | 99.2 ± 0.6 | 96.8 ± 0.4 | 99.2 ± 0.3 | 72.1 ± 1.5 | 93.0 ± 0.9 | 92.7 ± 0.7 | 91.5 ± 0.8 | 91.7 ± 0.7 |
| 4 | 86.8 ± 1.0 | 89.4 ± 1.4 | 89.8 ± 1.4 | 85.4 ± 2.1 | 78.8 ± 1.8 | 87.3 ± 1.9 | 85.1 ± 2.1 | 85.8 ± 2.0 |
| 5 | 100.0 ± 0.0 | 99.6 ± 0.2 | 97.0 ± 0.9 | 95.5 ± 0.8 | 93.0 ± 1.1 | 90.0 ± 1.5 | 91.2 ± 0.5 | 97.5 ± 0.6 |
| 6 | 99.8 ± 0.1 | 99.9 ± 0.1 | 98.8 ± 0.3 | 98.2 ± 0.3 | 97.1 ± 0.4 | 99.6 ± 0.2 | 98.6 ± 0.5 | 99.6 ± 0.1 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 53.9 ± 1.8 | 43.3 ± 1.4 | 51.6 ± 1.5 | 63.5 ± 0.3 | 57.4 ± 0.6 | 73.1 ± 1.0 |
| 87.3 ± 0.3 | 88.2 ± 0.4 | 91.6 ± 0.4 | 88.7 ± 0.8 | 87.6 ± 0.6 | 91.4 ± 0.5 | 90.4 ± 0.7 | 92.1 ± 0.6 | |
| 82.7 ± 0.3 | 83.1 ± 0.3 | 90.0 ± 0.3 | 81.8 ± 0.5 | 87.2 ± 0.5 | 89.7 ± 0.2 | 88.6 ± 0.4 | 90.4 ± 0.5 | |
| 83.2 ± 0.5 | 84.4 ± 0.6 | 88.9 ± 0.5 | 85.1 ± 1.0 | 83.9 ± 0.8 | 88.8 ± 0.6 | 87.4 ± 0.9 | 89.6 ± 0.8 | |
| Class | T = 200 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 99.4 ± 0.3 | 99.4 ± 0.2 | 94.6 ± 1.2 | 98.9 ± 0.3 | 98.8 ± 0.5 | 91.7 ± 0.7 | 95.4 ± 0.7 | 95.7 ± 0.9 |
| 2 | 94.1 ± 0.4 | 98.3 ± 0.4 | 96.4 ± 0.7 | 79.4 ± 1.3 | 99.7 ± 0.1 | 99.8 ± 0.1 | 99.7 ± 0.2 | 90.5 ± 1.2 |
| 3 | 99.0 ± 0.4 | 98.5 ± 0.4 | 99.1 ± 0.2 | 94.4 ± 0.7 | 94.5 ± 1.6 | 98.6 ± 0.6 | 97.9 ± 1.0 | 91.1 ± 1.1 |
| 4 | 96.4 ± 0.8 | 97.9 ± 0.5 | 91.2 ± 1.4 | 91.3 ± 0.5 | 87.3 ± 0.8 | 90.0 ± 0.7 | 89.0 ± 0.6 | 86.0 ± 2.3 |
| 5 | 99.8 ± 0.2 | 99.6 ± 0.1 | 95.5 ± 1.8 | 96.4 ± 0.4 | 94.8 ± 1.0 | 92.0 ± 2.1 | 98.0 ± 0.9 | 99.3 ± 0.2 |
| 6 | 99.5 ± 0.3 | 99.4 ± 0.3 | 99.3 ± 0.2 | 95.9 ± 0.2 | 98.0 ± 0.9 | 99.7 ± 0.2 | 98.0 ± 0.7 | 99.5 ± 0.3 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 54.9 ± 1.7 | 46.2 ± 0.4 | 46.3 ± 1.6 | 64.8 ± 0.3 | 62.5 ± 1.5 | 80.3 ± 0.5 |
| 90.2 ± 0.3 | 90.9 ± 0.1 | 92.0 ± 0.6 | 90.3 ± 0.2 | 90.5 ± 0.6 | 92.1 ± 0.3 | 91.9 ± 0.4 | 92.6 ± 0.7 | |
| 84.0 ± 0.1 | 84.7 ± 0.1 | 90.1 ± 0.6 | 86.1 ± 0.3 | 88.5 ± 0.5 | 90.9 ± 0.4 | 91.5 ± 0.4 | 91.8 ± 0.2 | |
| 86.9 ± 0.4 | 87.9 ± 0.2 | 89.5 ± 0.8 | 87.3 ± 0.3 | 87.5 ± 0.7 | 89.6 ± 0.4 | 89.4 ± 0.5 | 90.4 ± 0.9 | |
| Class | T = 100 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 99.7 ± 0.2 | 99.7 ± 0.1 | 99.7 ± 0.2 | 99.8 ± 0.1 | 97.5 ± 0.3 | 99.8 ± 0.2 | 97.7 ± 0.7 | 99.3 ± 0.2 |
| 2 | 99.4 ± 0.2 | 99.6 ± 0.2 | 99.1 ± 0.5 | 98.8 ± 0.4 | 98.7 ± 0.2 | 99.5 ± 0.2 | 96.1 ± 0.8 | 98.8 ± 0.3 |
| 3 | 98.8 ± 0.3 | 97.5 ± 0.3 | 97.1 ± 0.8 | 96.6 ± 0.3 | 93.7 ± 0.8 | 97.5 ± 0.3 | 98.7 ± 0.6 | 96.2 ± 0.7 |
| 4 | 99.6 ± 0.3 | 99.8 ± 0.2 | 98.5 ± 0.3 | 99.4 ± 0.3 | 98.9 ± 0.5 | 98.3 ± 0.5 | 97.6 ± 0.7 | 99.1 ± 0.2 |
| 5 | 99.1 ± 0.6 | 99.6 ± 0.2 | 95.7 ± 0.7 | 99.4 ± 0.2 | 98.6 ± 0.2 | 97.7 ± 0.6 | 99.8 ± 0.1 | 97.9 ± 0.5 |
| 6 | 71.5 ± 1.9 | 84.8 ± 2.4 | 85.5 ± 1.9 | 84.0 ± 2.6 | 83.7 ± 0.6 | 97.4 ± 0.6 | 75.5 ± 2.0 | 77.9 ± 1.7 |
| 7 | 99.1 ± 0.2 | 98.6 ± 0.4 | 97.7 ± 0.6 | 99.0 ± 0.5 | 91.0 ± 0.9 | 99.7 ± 0.1 | 99.1 ± 0.2 | 96.5 ± 0.4 |
| 8 | 88.5 ± 1.3 | 92.4 ± 1.8 | 99.5 ± 0.3 | 99.2 ± 0.2 | 79.8 ± 0.7 | 98.9 ± 0.3 | 99.7 ± 0.2 | 85.8 ± 1.4 |
| 9 | 99.6 ± 0.3 | 99.3 ± 0.2 | 89.5 ± 1.3 | 99.7 ± 0.2 | 92.3 ± 1.1 | 99.8 ± 0.1 | 99.8 ± 0.1 | 98.5 ± 0.3 |
| 10 | 99.6 ± 0.2 | 99.7 ± 0.2 | 94.2 ± 0.8 | 98.1 ± 0.6 | 99.2 ± 0.3 | 96.7 ± 0.6 | 99.3 ± 0.3 | 99.7 ± 0.2 |
| 11 | 99.3 ± 0.4 | 99.4 ± 0.2 | 99.7 ± 0.1 | 99.3 ± 0.2 | 98.6 ± 0.2 | 100.0 ± 0.0 | 99.5 ± 0.2 | 99.7 ± 0.1 |
| 12 | 96.9 ± 0.5 | 98.1 ± 0.6 | 98.4 ± 0.5 | 97.9 ± 0.5 | 92.3 ± 1.6 | 97.2 ± 0.6 | 96.7 ± 0.8 | 98.7 ± 0.3 |
| 13 | 81.2 ± 1.9 | 75.8 ± 0.8 | 70.7 ± 1.1 | 80.6 ± 1.5 | 76.8 ± 2.5 | 61.0 ± 0.9 | 89.9 ± 0.9 | 87.1 ± 2.4 |
| 14 | 99.4 ± 0.2 | 98.9 ± 0.3 | 69.8 ± 1.1 | 99.9 ± 0.0 | 97.5 ± 0.6 | 99.6 ± 0.2 | 100.0 ± 0.0 | 99.1 ± 0.5 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 57.0 ± 0.5 | 60.5 ± 0.4 | 68.1 ± 1.5 | 56.3 ± 0.3 | 72.0 ± 0.4 | 89.6 ± 0.5 |
| 78.8 ± 0.6 | 82.1 ± 0.5 | 86.2 ± 0.5 | 89.3 ± 0.6 | 86.4 ± 0.5 | 88.9 ± 0.3 | 89.9 ± 0.5 | 90.4 ± 0.6 | |
| 88.8 ± 0.2 | 89.5 ± 0.2 | 90.1 ± 0.3 | 94.1 ± 0.2 | 91.1 ± 0.3 | 93.3 ± 0.2 | 94.8 ± 0.2 | 94.9 ± 0.3 | |
| 76.5 ± 0.7 | 80.2 ± 0.5 | 84.7 ± 0.6 | 88.1 ± 0.7 | 84.8 ± 0.5 | 87.6 ± 0.3 | 88.8 ± 0.5 | 89.3 ± 0.7 | |
| Class | T = 200 | |||||||
|---|---|---|---|---|---|---|---|---|
| HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours | |
| 1 | 99.7 ± 0.1 | 99.8 ± 0.2 | 99.7 ± 0.2 | 99.3 ± 0.2 | 98.9 ± 0.3 | 99.8 ± 0.2 | 99.8 ± 0.1 | 99.5 ± 0.3 |
| 2 | 99.8 ± 0.1 | 99.9 ± 0.1 | 99.3 ± 0.3 | 98.9 ± 0.2 | 96.5 ± 0.9 | 98.7 ± 0.2 | 99.5 ± 0.2 | 99.0 ± 0.3 |
| 3 | 98.5 ± 0.3 | 98.1 ± 0.5 | 96.7 ± 0.4 | 96.8 ± 1.0 | 94.3 ± 0.4 | 96.6 ± 0.4 | 95.8 ± 0.8 | 99.7 ± 0.2 |
| 4 | 99.9 ± 0.1 | 99.5 ± 0.2 | 97.6 ± 0.6 | 99.5 ± 0.2 | 98.1 ± 0.5 | 99.1 ± 0.1 | 99.7 ± 0.1 | 99.7 ± 0.2 |
| 5 | 99.2 ± 0.3 | 99.4 ± 0.4 | 97.9 ± 0.7 | 98.8 ± 0.2 | 94.2 ± 0.6 | 98.9 ± 0.3 | 98.6 ± 0.2 | 99.2 ± 0.4 |
| 6 | 77.4 ± 1.8 | 84.6 ± 2.4 | 91.9 ± 0.8 | 86.9 ± 2.7 | 87.3 ± 2.3 | 86.4 ± 0.5 | 98.7 ± 0.7 | 85.3 ± 1.9 |
| 7 | 97.9 ± 0.3 | 98.2 ± 0.4 | 98.7 ± 0.5 | 98.7 ± 0.4 | 93.4 ± 0.7 | 99.0 ± 0.4 | 99.2 ± 0.2 | 98.3 ± 0.1 |
| 8 | 95.9 ± 0.8 | 99.6 ± 0.2 | 99.9 ± 0.0 | 98.8 ± 0.4 | 80.8 ± 0.7 | 99.7 ± 0.2 | 99.6 ± 0.2 | 96.1 ± 0.4 |
| 9 | 99.6 ± 0.2 | 97.5 ± 0.8 | 90.0 ± 0.7 | 99.6 ± 0.2 | 93.1 ± 0.6 | 100.0 ± 0.0 | 99.6 ± 0.1 | 99.3 ± 0.3 |
| 10 | 99.7 ± 0.1 | 99.3 ± 0.3 | 96.2 ± 0.8 | 99.7 ± 0.2 | 98.5 ± 0.3 | 98.1 ± 0.9 | 99.2 ± 0.3 | 99.8 ± 0.1 |
| 11 | 99.8 ± 0.2 | 98.4 ± 0.2 | 99.9 ± 0.1 | 99.8 ± 0.1 | 99.1 ± 0.3 | 100.0 ± 0.0 | 99.7 ± 0.1 | 99.3 ± 0.1 |
| 12 | 98.3 ± 0.3 | 98.4 ± 0.6 | 98.5 ± 0.4 | 98.8 ± 0.7 | 94.1 ± 0.9 | 97.0 ± 0.4 | 98.2 ± 0.5 | 99.7 ± 0.2 |
| 13 | 83.4 ± 1.5 | 85.6 ± 1.8 | 80.9 ± 1.0 | 89.7 ± 0.9 | 81.7 ± 1.1 | 85.2 ± 0.9 | 79.9 ± 1.5 | 91.3 ± 2.2 |
| 14 | 99.2 ± 0.2 | 99.1 ± 0.3 | 71.1 ± 1.8 | 99.7 ± 0.1 | 98.3 ± 0.5 | 100.0 ± 0.0 | 99.9 ± 0.1 | 99.4 ± 0.1 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 68.9 ± 0.4 | 64.7 ± 1.2 | 74.6 ± 0.6 | 78.1 ± 0.1 | 76.5 ± 0.4 | 97.9 ± 0.5 |
| 80.7 ± 0.5 | 83.7 ± 0.6 | 90.5 ± 0.2 | 91.1 ± 0.5 | 88.7 ± 0.4 | 92.3 ± 0.2 | 94.0 ± 0.2 | 94.8 ± 0.6 | |
| 89.9 ± 0.2 | 90.5 ± 0.2 | 92.5 ± 0.1 | 95.3 ± 0.2 | 92.2 ± 0.2 | 95.8 ± 0.1 | 96.3 ± 0.1 | 97.6 ± 0.2 | |
| 78.6 ± 0.6 | 82.0 ± 0.6 | 89.4 ± 0.2 | 90.1 ± 0.6 | 87.3 ± 0.5 | 91.4 ± 0.2 | 93.3 ± 0.2 | 94.1 ± 0.7 | |
| Class | HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours |
|---|---|---|---|---|---|---|---|---|
| 1 | 97.0 ± 0.5 | 93.3 ± 0.5 | 90.9 ± 0.8 | 97.4 ± 0.8 | 94.9 ± 1.4 | 90.5 ± 1.2 | 93.7 ± 1.0 | 96.6 ± 0.6 |
| 2 | 88.9 ± 1.4 | 89.5 ± 1.2 | 81.7 ± 1.0 | 90.9 ± 0.1 | 88.0 ± 1.1 | 87.2 ± 1.8 | 91.4 ± 1.0 | 92.4 ± 0.8 |
| 3 | 99.7 ± 0.1 | 99.9 ± 0.1 | 99.7 ± 0.1 | 99.6 ± 0.2 | 99.8 ± 0.2 | 99.6 ± 0.3 | 99.1 ± 0.2 | 100.0 ± 0.0 |
| 4 | 91.1 ± 1.4 | 90.2 ± 0.9 | 97.0 ± 1.0 | 98.9 ± 0.2 | 91.1 ± 1.0 | 97.0 ± 0.7 | 96.3 ± 0.3 | 94.8 ± 0.6 |
| 5 | 96.6 ± 0.5 | 97.7 ± 0.3 | 86.4 ± 0.5 | 91.3 ± 0.6 | 97.0 ± 0.9 | 86.3 ± 2.2 | 93.7 ± 0.9 | 95.3 ± 0.9 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 51.2 ± 1.4 | 42.1 ± 1.8 | 49.6 ± 0.5 | 73.1 ± 0.6 | 77.4 ± 0.5 | 83.8 ± 1.3 |
| 74.3 ± 0.3 | 73.6 ± 0.2 | 81.8 ± 0.6 | 84.3 ± 0.6 | 84.1 ± 0.6 | 87.1 ± 0.7 | 90.5 ± 0.4 | 93.1 ± 0.4 | |
| 78.9 ± 0.4 | 78.4 ± 0.1 | 84.5 ± 0.3 | 86.7 ± 0.4 | 86.7 ± 0.2 | 88.9 ± 0.5 | 91.9 ± 0.2 | 93.8 ± 0.4 | |
| 65.3 ± 0.4 | 64.8 ± 0.2 | 75.5 ± 0.7 | 78.7 ± 0.8 | 78.5 ± 0.8 | 82.7 ± 0.9 | 87.1 ± 0.5 | 90.6 ± 0.5 |
| Class | HyperMamba | MixerSENet | BDL- | SSLR | SSMLP | HyperTaFOR | FrHSPL | Ours |
|---|---|---|---|---|---|---|---|---|
| 1 | 99.3 ± 0.3 | 92.2 ± 0.2 | 99.9 ± 0.1 | 99.0 ± 0.2 | 97.4 ± 0.5 | 99.3 ± 0.5 | 99.6 ± 0.2 | 100.0 ± 0.0 |
| 2 | 99.4 ± 0.1 | 99.8 ± 0.1 | 99.3 ± 0.3 | 99.3 ± 0.2 | 99.3 ± 0.3 | 90.6 ± 1.0 | 99.8 ± 0.1 | 99.4 ± 0.2 |
| 3 | 97.2 ± 0.6 | 99.1 ± 0.1 | 93.1 ± 1.0 | 95.3 ± 1.1 | 95.4 ± 0.9 | 98.2 ± 0.4 | 97.9 ± 0.3 | 98.2 ± 0.6 |
| 4 | 99.5 ± 0.2 | 99.8 ± 0.1 | 98.6 ± 0.7 | 99.7 ± 0.1 | 99.6 ± 0.2 | 99.5 ± 0.3 | 99.7 ± 0.2 | 99.7 ± 0.1 |
| 5 | 99.3 ± 0.2 | 98.2 ± 0.5 | 99.6 ± 0.2 | 99.0 ± 0.4 | 99.1 ± 0.3 | 99.7 ± 0.2 | 99.8 ± 0.1 | 97.6 ± 0.2 |
| 6 | 75.1 ± 2.1 | 84.8 ± 1.1 | 88.3 ± 1.6 | 87.4 ± 1.5 | 90.9 ± 1.9 | 94.2 ± 0.7 | 77.2 ± 1.3 | 84.5 ± 1.1 |
| 7 | 99.5 ± 0.2 | 98.8 ± 0.4 | 99.9 ± 0.1 | 91.8 ± 1.3 | 92.6 ± 1.5 | 99.7 ± 0.2 | 99.3 ± 0.1 | 99.2 ± 0.4 |
| 8 | 98.0 ± 0.9 | 95.2 ± 0.9 | 99.0 ± 0.2 | 97.3 ± 0.3 | 98.7 ± 0.2 | 99.6 ± 0.2 | 99.2 ± 0.4 | 98.7 ± 0.3 |
| 9 | 98.9 ± 0.4 | 98.6 ± 0.2 | 97.7 ± 0.6 | 97.3 ± 1.1 | 96.3 ± 0.4 | 98.1 ± 0.3 | 96.4 ± 1.0 | 99.4 ± 0.3 |
| 10 | 85.6 ± 1.1 | 72.3 ± 1.9 | 84.0 ± 1.4 | 93.2 ± 1.2 | 92.1 ± 0.9 | 72.6 ± 1.6 | 91.6 ± 0.8 | 89.5 ± 2.4 |
| 11 | 98.8 ± 0.5 | 98.6 ± 0.4 | 99.8 ± 0.1 | 98.1 ± 0.4 | 97.7 ± 0.4 | 99.4 ± 0.3 | 99.8 ± 0.1 | 97.4 ± 0.7 |
| Novel | 0.0 ± 0.0 | 0.0 ± 0.0 | 56.6 ± 1.6 | 65.5 ± 1.1 | 63.5 ± 1.1 | 76.6 ± 0.7 | 80.4 ± 0.4 | 87.9 ± 0.9 |
| 80.7 ± 0.5 | 81.4 ± 0.2 | 89.6 ± 0.5 | 90.6 ± 0.4 | 91.0 ± 0.3 | 92.0 ± 0.4 | 91.4 ± 0.3 | 93.2 ± 0.4 | |
| 87.6 ± 0.2 | 86.5 ± 0.2 | 93.0 ± 0.3 | 93.6 ± 0.2 | 93.5 ± 0.2 | 93.9 ± 0.3 | 95.1 ± 0.2 | 96.0 ± 0.2 | |
| 78.4 ± 0.5 | 79.3 ± 0.3 | 88.3 ± 0.6 | 89.4 ± 0.5 | 89.9 ± 0.3 | 91.0 ± 0.4 | 90.4 ± 0.4 | 92.4 ± 0.5 |
| Method | Params | ) | Runtime (s) |
|---|---|---|---|
| MixerSENet | 53,146 | 7.894 | 15.7 |
| SSLR | 278,670 | 25.81 | 50.3 |
| BDL- | 53,469 | 204.17 | 39.6 |
| Ours | 29,545,764 | 22,202 | 42.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, F.; Zhao, W.; Wang, Q.; Peng, R. A Global Distribution-Aware Network for Open-Set Hyperspectral Image Classification. Remote Sens. 2025, 17, 3938. https://doi.org/10.3390/rs17243938
Ji F, Zhao W, Wang Q, Peng R. A Global Distribution-Aware Network for Open-Set Hyperspectral Image Classification. Remote Sensing. 2025; 17(24):3938. https://doi.org/10.3390/rs17243938
Chicago/Turabian StyleJi, Fengcheng, Wenzhi Zhao, Qiao Wang, and Rui Peng. 2025. "A Global Distribution-Aware Network for Open-Set Hyperspectral Image Classification" Remote Sensing 17, no. 24: 3938. https://doi.org/10.3390/rs17243938
APA StyleJi, F., Zhao, W., Wang, Q., & Peng, R. (2025). A Global Distribution-Aware Network for Open-Set Hyperspectral Image Classification. Remote Sensing, 17(24), 3938. https://doi.org/10.3390/rs17243938

