Understanding the Anomalies in Exotic Annual Grass Cover in Precipitation Scenario Maps of Rangelands in the Western United States
Highlights
- We found locations where Exotic Annual Grass (EAG) cover does not follow typical patterns in precipitation scenarios modelling.
- Locations with high elevation, silt, sand, solar radiation, and/or high perennial grass cover were found to have a higher density of lower-than-expected EAG cover in wet precipitation scenarios while areas with low clay content, low perennial grass cover, and/or high elevation had a higher density of higher-than-expected cover in dry precipitation scenarios.
- Regional to local scale drivers like edaphic conditions, microclimate, disturbance history, or land use may influence EAG responses to precipitation.
- Our findings can support land managers in understanding the landscape dynamics of EAG in response to precipitation-understanding where forage shortages may exist, avoiding treatments in unnecessary areas, and better understand fire risk.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. EAG Scenario Development
2.3. Inputs to Analysis of EAG Anomalies
2.4. Data Processing Methods
- −EAG anomalies: EAG cover in the PPT_1.5 or PPT_2.0 scenarios was less than or equal to that in PPT_1.0.
- +EAG anomalies: EAG cover in the PPT_0.75 or PPT_0.5 scenarios was greater than or equal to that in PPT_1.0.
2.5. Data Analysis
3. Results
3.1. Extent of EAG Cover Anomalies in Relation to Precipitation Level
3.2. Effect of Edaphic Variables on EAG Cover in Relation to Precipitation Level
3.3. Effect of Topography on EAG Cover in Relation to Precipitation Level
3.4. Effect of Perennial Vegetation on EAG Cover in Relation to Precipitation Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslan, C.E.; Dickson, B.G. Non-native plants exert strong but under-studied influence on fire dynamics. NeoBiota 2020, 61, 47–64. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Davies, K.W.; Nafus, A.M. Exotic annual grass invasion alters fuel amounts, continuity and moisture content. Int. J. Wildland Fire 2013, 22, 353–358. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.-N. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 2017, 20, 1493–1506. [Google Scholar] [CrossRef]
- Tomat-Kelly, G.; Flory, S.L. Research gaps limit understanding of invasion-fire cycles. Biol. Invasions 2022, 25, 693–711. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Gu, Y.; Major, D.J. Estimating Abiotic Thresholds for Sagebrush Condition Class in the Western United States. Rangel. Ecol. Manag. 2020, 73, 297–308. [Google Scholar] [CrossRef]
- Bradley, B.A.; Mustard, J.F. Identifying land cover variability distinct from land cover change: Cheatgrass in the Great Basin. Remote Sens. Environ. 2005, 94, 204–213. [Google Scholar] [CrossRef]
- Chambers, J.C.; Strand, E.K.; Ellsworth, L.M.; Tortorelli, C.M.; Urza, A.K.; Crist, M.R.; Miller, R.F.; Reeves, M.C.; Short, K.C.; Williams, C.L. Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S. Fire Ecol. 2024, 20, 32. [Google Scholar] [CrossRef]
- Wood, D.J.A.; Seipel, T.; Irvine, K.M.; Rew, L.J.; Stoy, P.C. Fire and development influences on sagebrush community plant groups across a climate gradient in northern Nevada. Ecosphere 2019, 10, 02990. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gomez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef]
- Goergen, E.M.; Leger, E.A.; Espeland, E.K. Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion. PLoS ONE 2011, 6, e18145. [Google Scholar] [CrossRef] [PubMed]
- Brownsey, P.; James, J.J.; Barry, S.J.; Becchetti, T.A.; Davy, J.S.; Doran, M.P.; Forero, L.C.; Harper, J.M.; Larsen, R.E.; Larson-Praplan, S.R.; et al. Using Phenology to Optimize Timing of Mowing and Grazing Treatments for Medusahead (Taeniatherum caput-medusae). Rangel. Ecol. Manag. 2017, 70, 210–218. [Google Scholar] [CrossRef]
- Davies, K.W.; Boyd, C.S.; Beck, J.L.; Bates, J.D.; Svejcar, T.J.; Gregg, M.A. Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 2011, 144, 2573–2584. [Google Scholar] [CrossRef]
- Franzese, J.; di Virgilio, A.; Pirk, G.; Lescano, M.N.; Speziale, K.L. Low biotic resistance to cheatgrass invasion in Patagonia: Evidence from competition experiments. Biol. Invasions 2021, 24, 235–246. [Google Scholar] [CrossRef]
- Ni, M.; Liu, Y.; Chu, C.; Xu, H.; Fang, S. Fast seedling root growth leads to competitive superiority of invasive plants. Biol. Invasions 2018, 20, 1821–1832. [Google Scholar] [CrossRef]
- Tarbox, B.C.; Van Schmidt, N.D.; Shyvers, J.E.; Saher, D.J.; Heinrichs, J.A.; Aldridge, C.L. Bridging the gap between spatial modeling and management of invasive annual grasses in the imperiled sagebrush biome. Rangel. Ecol. Manag. 2022, 82, 104–115. [Google Scholar] [CrossRef]
- Applestein, C.; Germino, M.J. Patterns of post-fire invasion of semiarid shrub-steppe reveals a diversity of invasion niches within an exotic annual grass community. Biol. Invasions 2022, 24, 741–759. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Welty, J.L.; Arkle, R.S. Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecol. Evol. 2017, 7, 8126–8151. [Google Scholar] [CrossRef]
- Davies, K.W.; Boyd, C.S.; Copeland, S.M.; Bates, J.D. Moderate Grazing During the Off-Season (Fall-Winter) Reduces Exotic Annual Grasses in Sagebrush-Bunchgrass Steppe. Rangel. Ecol. Manag. 2022, 82, 51–57. [Google Scholar] [CrossRef]
- Davies, K.W.; Bates, J.D.; Perryman, B.; Arispe, S. Fall-Winter Grazing After Fire in Annual Grass-Invaded Sagebrush Steppe Reduced Annuals and Increased a Native Bunchgrass. Rangel. Ecol. Manag. 2021, 77, 1–8. [Google Scholar] [CrossRef]
- Chambers, J.C.; Miller, R.F.; Board, D.I.; Pyke, D.A.; Roundy, B.A.; Grace, J.B.; Schupp, E.W.; Tausch, R.J. Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangel. Ecol. Manag. 2014, 67, 440–454. [Google Scholar] [CrossRef]
- Chambers, J.C.; Roundy, B.A.; Blank, R.R.; Meyer, S.E.; Whittaker, A. What Makes Great Basin Sagebrush Ecosystems Invasible Bybromus Tectorum? Ecol. Monogr. 2007, 77, 117–145. [Google Scholar] [CrossRef]
- Chambers, J.C.; Bradley, B.A.; Brown, C.S.; D’Antonio, C.; Germino, M.J.; Grace, J.B.; Hardegree, S.P.; Miller, R.F.; Pyke, D.A. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 2013, 17, 360–375. [Google Scholar] [CrossRef]
- Dahal, D.; Boyte, S.P.; Oimoen, M.J. Predicting Exotic Annual Grass Abundance in Rangelands of the Western United States Using Various Precipitation Scenarios. Rangel. Ecol. Manag. 2023, 90, 221–230. [Google Scholar] [CrossRef]
- Bradley, B.A.; Curtis, C.A.; Chambers, J.C. Bromus response to climate and projected changes with climate change. In Exotic Brome Grasses in Arid and Semiarid Ecosystems of the Western US: Causes, Consequences, and Management Implications; Germino, M.J., Chambers, J.C., Brown, C.S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 257–274. [Google Scholar]
- Terry, T.J.; Hardegree, S.P.; Adler, P.B. Modeling cheatgrass distribution, abundance, and response to climate change as a function of soil microclimate. Ecol. Appl. 2024, 34, e3028. [Google Scholar] [CrossRef]
- Nunes, A.M.; Byrne, K.M. Drought and shrub cover differentially affect seed bank composition within two sagebrush steppe communities. J. Arid Environ. 2022, 202, 104752. [Google Scholar] [CrossRef]
- Maxwell, T.M.; Germino, M.J. The effects of cheatgrass invasion on US Great Basin carbon storage depend on interactions between plant community composition, precipitation seasonality, and soil climate regime. J. Appl. Ecol. 2022, 59, 2863–2873. [Google Scholar] [CrossRef]
- Bansal, S.; James, J.J.; Sheley, R.L. The effects of precipitation and soil type on three invasive annual grasses in the western United States. J. Arid Environ. 2014, 104, 38–42. [Google Scholar] [CrossRef]
- Compagnoni, A.; Adler, P.B. Warming, competition, and Bromus tectorum population growth across an elevation gradient. Ecosphere 2014, 5, 1–34. [Google Scholar] [CrossRef]
- Pastick, N.J.; Wylie, B.K.; Rigge, M.B.; Dahal, D.; Boyte, S.P.; Jones, M.O.; Allred, B.W.; Parajuli, S.; Wu, Z. Rapid monitoring of the abundance and spread of exotic annual grasses in the western United States using remote sensing and machine learning. AGU Adv. 2021, 2, e2020AV000298. [Google Scholar] [CrossRef]
- Ryel, R.J.; Leffler, A.J.; Ivans, C.; Peek, M.S.; Caldwell, M.M. Functional differences in water-use patterns of contrasting life forms in Great Basin steppelands. Vadose Zone J. 2010, 9, 548–560. [Google Scholar] [CrossRef]
- Williamson, M.A.; Fleishman, E.; Mac Nally, R.C.; Chambers, J.C.; Bradley, B.A.; Dobkin, D.S.; Board, D.I.; Fogarty, F.A.; Horning, N.; Leu, M.; et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 2020, 22, 663–680. [Google Scholar] [CrossRef]
- Case, M.F.; Davies, K.W.; Boyd, C.S.; Aoyama, L.; Merson, J.; Penkauskas, C.; Hallett, L.M. Cross-scale analysis reveals interacting predictors of annual and perennial cover in Northern Great Basin rangelands. Ecol. Appl. 2024, 34, e2953. [Google Scholar] [CrossRef]
- Rau, B.M.; Chambers, J.C.; Pyke, D.A.; Roundy, B.A.; Schupp, E.W.; Doescher, P.; Caldwell, T.G. Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems. Rangel. Ecol. Manag. 2014, 67, 506–521. [Google Scholar] [CrossRef]
- Mahood, A.L.; Jones, R.O.; Board, D.I.; Balch, J.K.; Chambers, J.C. Interannual climate variability mediates changes in carbon and nitrogen pools caused by annual grass invasion in a semiarid shrubland. Global Change Biol. 2022, 28, 267–284. [Google Scholar] [CrossRef]
- Feldman, A.F.; Feng, X.; Felton, A.J.; Konings, A.G.; Knapp, A.K.; Biederman, J.A.; Poulter, B. Plant responses to changing rainfall frequency and intensity. Nat. Rev. Earth Environ. 2024, 5, 276–294. [Google Scholar] [CrossRef]
- Davies, K.W.; Wollstein, K.; Dragt, B.; O’Connor, C. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands 2022, 44, 194–199. [Google Scholar] [CrossRef]
- Schroeder, V.M.; Johnson, D.D.; O’Connor, R.C.; Crouch, C.G.; Dragt, W.J.; Quicke, H.E.; Silva, L.F.; Wood, D.J. Managing invasive annual grasses, annually: A case for more case studies. Rangelands 2022, 44, 210–217. [Google Scholar] [CrossRef]
- Dahal, D.; Pastick, N.J.; Boyte, S.P.; Parajuli, S.; Oimoen, M.J.; Megard, L.J. Fractional Estimates of Multiple Exotic Annual Grass (EAG) Species in the Sagebrush Biome, USA, 2016–2023 (ver. 4.0, July 2024). 2021. [Google Scholar] [CrossRef]
- Wylie, B.K.; Pastick, N.J.; Picotte, J.J.; Deering, C.A. Geospatial data mining for digital raster mapping. Gisci. Remote Sens. 2019, 56, 406–429. [Google Scholar] [CrossRef]
- Kearney, S.P.; Porensky, L.M.; Augustine, D.J.; Gaffney, R.; Derner, J.D. Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]
- Jansen, V.S.; Kolden, C.A.; Schmalz, H.J.; Karl, J.W.; Taylor, R.V. Using Satellite-Based Vegetation Data for Short-Term Grazing Monitoring to Inform Adaptive Management. Rangel. Ecol. Manag. 2021, 76, 30–42. [Google Scholar] [CrossRef]
- Allred, B.W.; Creutzburg, M.K.; Carlson, J.C.; Cole, C.J.; Dovichin, C.M.; Duniway, M.C.; Jones, M.O.; Maestas, J.D.; Naugle, D.E.; Nauman, T.W.; et al. Guiding principles for using satellite-derived maps in rangeland management. Rangelands 2022, 44, 78–86. [Google Scholar] [CrossRef]
- Oja, T.; Jaaska, V.; Vislap, V. Breeding system, evolution and taxonomy of Bromus arvensis, B. japonicus and B. squarrosus (Poaceae). Plant Syst. Evol. 2003, 242, 101–117. [Google Scholar] [CrossRef]
- Porensky, L.M.; Blumenthal, D.M. Historical wildfires do not promote cheatgrass invasion in a western Great Plains steppe. Biol. Invasions 2016, 18, 3333–3349. [Google Scholar] [CrossRef]
- Dewitz, J.; U.S. Geological Survey. National Land Cover Database (NLCD) 2019 Products (ver. 2.0, June 2021). 2021. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 2016, 38, 278–284. [Google Scholar] [CrossRef]
- Gesch, D.B.; Evans, G.A.; Oimoen, M.J.; Arundel, S. The National Elevation Dataset. In Digital Elevation Model Technologies and Applications: The DEM Users Manual, 3rd ed.; Maune, D.F., Nayegandh, A., Eds.; American Society for Photogrammetry and Remote Sensing: Baton Rouge, LA, USA, 2018; pp. 83–110. [Google Scholar]
- Cracknell, A.P. Review article Synergy in remote sensing-what’s in a pixel? Int. J. Remote Sens. 2010, 19, 2025–2047. [Google Scholar] [CrossRef]
- Gomez-Chova, L.; Zurita-Milla, R.; Alonso, L.; Amoros-Lopez, J.; Guanter, L.; Camps-Valls, G. Gridding artifacts on medium-resolution satellite image time series: MERIS case study. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2601–2611. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chaney, N.W.; Wood, E.F.; McBratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-m probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Rigge, M.B.; Bunde, B.; Postma, K.; Shi, H. Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985–2021; USGS: Reston, VA, USA, 2022. [CrossRef]
- Howell, A.; Winkler, D.E.; Phillips, M.L.; McNellis, B.; Reed, S.C. Experimental Warming Changes Phenology and Shortens Growing Season of the Dominant Invasive Plant Bromus tectorum (Cheatgrass). Front Plant Sci 2020, 11, 570001. [Google Scholar] [CrossRef] [PubMed]
- Sospedra-Alfonso, R.; Melton, J.R.; Merryfield, W.J. Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett. 2015, 42, 4429–4438. [Google Scholar] [CrossRef]
- Joly, D.; Castel, T.; Pohl, B.; Richard, Y. Influence of spatial information resolution on the relation between elevation and temperature. Int. J. Climatol. 2018, 38, 5677–5688. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Li, Y.; Wang, Q.; Jensen, J.R.; Zhang, Y.; Porter, J.R. Evaluation of temperature-based global solar radiation models in China. Agric. For. Meteorol. 2009, 149, 1433–1446. [Google Scholar] [CrossRef]
- Meza, F.; Varas, E. Estimation of mean monthly solar global radiation as a function of temperature. Agric. For. Meteorol. 2000, 100, 231–241. [Google Scholar] [CrossRef]
- DeFalco, L.A.; Fernandez, G.C.J.; Nowak, R.S. Variation in the establishment of a non-native annual grass influences competitive interactions with Mojave Desert perennials. Biol. Invasions 2006, 9, 293–307. [Google Scholar] [CrossRef]
- Doherty, K.; Theobald, D.M.; Bradford, J.B.; Wiechman, L.A.; Bedrosian, G.; Boyd, C.S.; Cahill, M.; Coates, P.S.; Creutzburg, M.K.; Crist, M.R.; et al. A Sagebrush Conservation Design to Proactively Restore America’s Sagebrush Biome; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2022; 38p.
- Chiang, S.-H. Location quotient and trade. Ann. Reg. Sci. 2009, 43, 399–414. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass Percent Cover Change: Comparing Recent Estimates to Climate Change–Driven Predictions in the Northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [Google Scholar] [CrossRef]
- Smith, J.T.; Allred, B.W.; Boyd, C.S.; Davies, K.W.; Jones, M.O.; Kleinhesselink, A.R.; Maestas, J.D.; Morford, S.L.; Naugle, D.E. The elevational ascent and spread of exotic annual grass dominance in the Great Basin, USA. Divers. Distrib. 2021, 28, 83–96. [Google Scholar] [CrossRef]
- Humphrey, L.D.; Schupp, E.W. Seed banks of Bromus tectorum-dominated communities in the Great Basin. West. N. Am. Nat. 2001, 61, 85–92. [Google Scholar]
- Meyer, S.E.; Quinney, D.; Nelson, D.L.; Weaver, J. Impact of the pathogen Pyrenophora semeniperda on Bromus tectorum seedbank dynamics in North American cold deserts. Weed Res. 2007, 47, 54–62. [Google Scholar] [CrossRef]
- Fernandez-Illescas, C.P.; Porporato, A.; Laio, F.; Rodriguez-Iturbe, I. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 2001, 37, 2863–2872. [Google Scholar] [CrossRef]
- Leffler, A.J.; Ryel, R.J. Resource Pool Dynamics: Conditions That Regulate Species Interactions and Dominance. In Invasive Plant Ecology and Management: Linking Processes to Practice; Monaco, T.A., Sheley, R.L., Eds.; CAB International: Wallingford, UK, 2012; pp. 57–78. [Google Scholar]
- Fravolini, A.; Hultine, K.R.; Brugnoli, E.; Gazal, R.; English, N.B.; Williams, D.G. Precipitation pulse use by an invasive woody legume: The role of soil texture and pulse size. Oecologia 2005, 144, 618–627. [Google Scholar] [CrossRef]
- McAuliffe, J.R. Landscape Evolution, Soil Formation, and Ecological Patterns and Processes in Sonoran Desert Bajadas. Ecol. Monogr. 1994, 64, 111–148. [Google Scholar] [CrossRef]
- Leffler, A.J.; James, J.J.; Monaco, T.A. Temperature and functional traits influence differences in nitrogen uptake capacity between native and invasive grasses. Oecologia 2013, 171, 51–60. [Google Scholar] [CrossRef]
- Fernandez-Going, B.M.; Anacker, B.L.; Harrison, S.P. Temporal variability in California grasslands: Soil type and species functional traits mediate response to precipitation. Ecology 2012, 93, 2104–2114. [Google Scholar] [CrossRef]
- McMahon, D.E.; Urza, A.K.; Brown, J.L.; Phelan, C.; Chambers, J.C.; Ibáñez, I. Modelling species distributions and environmental suitability highlights risk of plant invasions in western United States. Divers. Distrib. 2021, 27, 710–728. [Google Scholar] [CrossRef]
- Salo, L.F. Population dynamics of red brome (Bromus madritensis subsp. rubens): Times for concern, opportunities for management. J. Arid Environ. 2004, 57, 291–296. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Dilts, T.E.; Greenberg, J.A.; Johnson, K.N.; Pai, H.; Sladek, C.; Kratt, C.; Tyler, S.W.; Ready, A. Phenology-based classification of invasive annual grasses to the species level. Remote Sens. Environ. 2021, 263, 112568. [Google Scholar] [CrossRef]
- Horn, K.J.; Nettles, R.; Clair, S.B.S. Germination response to temperature and moisture to predict distributions of the invasive grass red brome and wildfire. Biol. Invasions 2015, 17, 1849–1857. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Rinella, M.J. Molecular evidence for impoverished mycorrhizal communities of Agropyron cristatum compared with nine other plant species in the Northern Great Plains. Rangel. Ecol. Manag. 2021, 74, 147–150. [Google Scholar] [CrossRef]
- Beckstead, J.; Augspurger, C.K. An experimental test of resistance to cheatgrass invasion: Limiting resources at different life stages. Biol. Invasions 2004, 6, 417–432. [Google Scholar] [CrossRef]
- Mangla, S.; Sheley, R.L.; James, J.J.; Radosevich, S.R. Intra and interspecific competition among invasive and native species during early stages of plant growth. Plant Ecol. 2011, 212, 531–542. [Google Scholar] [CrossRef]
- Davies, K.W.; Leger, E.A.; Boyd, C.S.; Hallett, L.M. Living with exotic annual grasses in the sagebrush ecosystem. J. Environ. Manag. 2021, 288, 112417. [Google Scholar] [CrossRef]
- Davies, K.W.; Johnson, D.D. Established Perennial Vegetation Provides High Resistance to Reinvasion by Exotic Annual Grasses. Rangel. Ecol. Manag. 2017, 70, 748–754. [Google Scholar] [CrossRef]
- He, L.; Wang, J.; Peltier, D.M.P.; Ritter, F.; Ciais, P.; Peñuelas, J.; Xiao, J.; Crowther, T.W.; Li, X.; Ye, J.-S.; et al. Lagged precipitation effects on plant production across terrestrial biomes. Nat. Ecol. Evol. 2025, 9, 1800–1811. [Google Scholar] [CrossRef]
- Li, J.; Kug, J.-S.; Park, S.-w.; Zhai, P.; Huang, M.; Kim, J.-S. Distinct magnitude asymmetries of daily extreme anomalies in gross primary productivity between forests and non-forests. Clim. Dyn. 2022, 59, 767–784. [Google Scholar] [CrossRef]
- Mata-González, R.; Hunter, R.G.; Coldren, C.L.; McLendon, T.; Paschke, M.W. Modelling plant growth dynamics in sagebrush steppe communities affected by fire. J. Arid Environ. 2007, 69, 144–157. [Google Scholar] [CrossRef]
- Liu, C.; Wolter, C.; Courchamp, F.; Roura-Pascual, N.; Jeschke, J.M. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology 2022, 103, e3719. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Hamilton, H. Ecological Niche Transferability Using Invasive Species as a Case Study. PLoS ONE 2015, 10, e0119891. [Google Scholar] [CrossRef] [PubMed]
- Knapp, P.A. Spatio-Temporal Patterns of Large Grassland Fires in the Intermountain West, USA. Global Ecol. Biogeogr. Lett. 1998, 7, 259–272. [Google Scholar] [CrossRef]









| Precipitation Scenario | Statistic | Clay (%) | Sand (%) | Silt (%) | |||
|---|---|---|---|---|---|---|---|
| ≤10 | >10 | ≤10 | >10 | ≤10 | >10 | ||
| PPT_0.5 | Mean | 19.46 | 19.81 | 17.27 | 19.64 | 18.58 | 19.67 |
| Median | 17 | 17 | 16 | 17 | 17 | 17 | |
| B_mean | 15.69 | 16.08 | 13.94 | 15.84 | 15.17 | 15.82 | |
| B_med | 14 | 14 | 13 | 14 | 14 | 14 | |
| KS_test | 0.27 | 0.25 | 0.32 | 0.27 | 0.28 | 0.27 | |
| Area% | 14.01 | 0.46 | 1.07 | 13.40 | 2.72 | 11.75 | |
| PPT_0.75 | Mean | 21.66 | 21.86 | 19.99 | 21.82 | 20.74 | 21.93 |
| Median | 20 | 19 | 18 | 20 | 19 | 20 | |
| B_mean | 18.34 | 18.02 | 16.84 | 18.46 | 17.66 | 18.51 | |
| B_med | 17 | 16 | 15 | 17 | 16 | 17 | |
| KS_test | 0.182 | 0.21 | 0.22 | 0.18 | 0.19 | 0.18 | |
| Area% | 20.47 | 0.89 | 1.74 | 19.61 | 4.70 | 16.65 | |
| PPT_1.5 | Mean | 21.34 | 20.04 | 22.41 | 21.21 | 19.65 | 21.74 |
| Median | 19 | 17 | 20 | 19 | 18 | 19 | |
| B_mean | 25.68 | 23.01 | 26.46 | 25.56 | 23.71 | 26.13 | |
| B_med | 24 | 21 | 24 | 24 | 22 | 24 | |
| KS_test | 0.23 | 0.20 | 0.20 | 0.23 | 0.24 | 0.22 | |
| Area% | 28.55 | 0.62 | 2.35 | 26.82 | 6.01 | 23.17 | |
| PPT_2.0 | Mean | 21.85 | 19.26 | 22.97 | 21.7 | 20.07 | 22.25 |
| Median | 20 | 17 | 21 | 19 | 18 | 20 | |
| B_mean | 27.1 | 22.47 | 27.89 | 26.94 | 24.67 | 27.62 | |
| B_med | 25 | 21 | 26 | 25 | 24 | 26 | |
| KS_test | 0.25 | 0.22 | 0.22 | 0.25 | 0.26 | 0.25 | |
| Area% | 28.19 | 0.53 | 2.31 | 26.42 | 5.87 | 22.85 | |
| PPT_1.0 | Area% | 96.57 | 3.43 | 9 | 91 | 24.31 | 75.69 |
| Precipitation Scenario | Statistic | Elevation (m) | Potential Annual Direct Radiation (PADR) (MJ/cm2/yr) | ||||
|---|---|---|---|---|---|---|---|
| ≤1350 | >1350 and ≤2200 | >2200 | ≤0.78 | >0.78 and ≤0.9 | >0.9 | ||
| PPT_0.5 | Mean | 21.38 | 16.92 | 15.16 | 19.35 | 19.68 | 20.32 |
| Median | 19 | 15 | 13 | 17 | 17 | 18 | |
| B_mean | 17.17 | 13.79 | 10.81 | 15.73 | 15.54 | 16.33 | |
| B_med | 15 | 13 | 10 | 14 | 14 | 14 | |
| KS_test | 0.23 | 0.32 | 0.57 | 0.26 | 0.31 | 0.27 | |
| Area% | 6.32 | 6.99 | 0.15 | 10.24 | 3.71 | 0.52 | |
| PPT_0.75 | Mean | 23.02 | 20.03 | 15.96 | 21.43 | 22.23 | 22.54 |
| Median | 21 | 18 | 14 | 19 | 20 | 21 | |
| B_mean | 19.3 | 17.17 | 12.58 | 18.21 | 18.58 | 18.83 | |
| B_med | 17 | 16 | 11 | 17 | 17 | 17 | |
| KS_test | 0.17 | 0.20 | 0.45 | 0.18 | 0.20 | 0.18 | |
| Area% | 10.88 | 11.35 | 0.13 | 15.26 | 5.25 | 0.85 | |
| PPT_1.5 | Mean | 22.34 | 20.03 | 16.89 | 21.27 | 21.42 | 21.59 |
| Median | 20 | 18 | 15 | 19 | 19 | 19 | |
| B_mean | 26.78 | 24.21 | 20.99 | 25.55 | 25.86 | 26.27 | |
| B_med | 25 | 23 | 20 | 24 | 24 | 24 | |
| KS_test | 0.21 | 0.24 | 0.31 | 0.23 | 0.22 | 0.23 | |
| Area% | 16.28 | 12.78 | 0.11 | 22.79 | 5.68 | 0.70 | |
| PPT_2.0 | Mean | 22.93 | 20.52 | 16.61 | 21.9 | 21.42 | 21.37 |
| Median | 21 | 18 | 15 | 20 | 20 | 19 | |
| B_mean | 28.2 | 25.67 | 21.61 | 27.12 | 26.62 | 26.27 | |
| B_med | 26 | 24 | 21 | 25 | 25 | 24 | |
| KS_test | 0.23 | 0.27 | 0.36 | 0.25 | 0.26 | 0.25 | |
| Area% | 15.45 | 13.16 | 0.11 | 22.96 | 5.22 | 0.55 | |
| PPT_1.0 | Area% | 57.91 | 41.75 | 0.35 | 77.13 | 19.69 | 3.18 |
| Precipitation Scenario | Statistic | Perennial Herbaceous (%) | Shrub (%) | ||||
|---|---|---|---|---|---|---|---|
| ≤8 | >8 and ≤20 | >20 | ≤8 | >8 and ≤20 | >20 | ||
| PPT_0.5 | Mean | 19.18 | 19.97 | 18.57 | 20.85 | 17.48 | 18.57 |
| Median | 17 | 18 | 17 | 18 | 15 | 17 | |
| B_mean | 16.28 | 16.13 | 14.96 | 17 | 13.92 | 14.69 | |
| B_med | 14 | 14 | 14 | 15 | 12 | 14 | |
| KS_test | 0.26 | 0.25 | 0.29 | 0.22 | 0.34 | 0.30 | |
| Area% | 5.34 | 3.15 | 5.97 | 7.75 | 4.27 | 2.45 | |
| PPT_0.75 | Mean | 22.64 | 23.05 | 20.24 | 23.17 | 19.61 | 20.04 |
| Median | 21 | 21 | 18 | 21 | 17 | 18 | |
| B_mean | 19.05 | 19.67 | 17.1 | 19.74 | 16.52 | 16.56 | |
| B_med | 17 | 18 | 15 | 18 | 15 | 15 | |
| KS_test | 0.17 | 0.16 | 0.21 | 0.15 | 0.23 | 0.21 | |
| Area% | 7.12 | 4.76 | 9.47 | 11.93 | 5.95 | 3.46 | |
| PPT_1.5 | Mean | 22.76 | 22.1 | 20.63 | 22.79 | 19.55 | 19.07 |
| Median | 19 | 21 | 18 | 21 | 17 | 17 | |
| B_mean | 25.19 | 27.63 | 24.78 | 27.13 | 23.69 | 23.62 | |
| B_med | 24 | 26 | 23 | 25 | 22 | 22 | |
| KS_test | 0.24 | 0.21 | 0.23 | 0.20 | 0.25 | 0.28 | |
| Area% | 7.47 | 7.61 | 14.09 | 16.55 | 7.87 | 4.76 | |
| PPT_2.0 | Mean | 22.03 | 21.83 | 20.95 | 23.36 | 19.78 | 19.17 |
| Median | 19 | 21 | 19 | 21 | 18 | 17 | |
| B_mean | 25.97 | 29.44 | 26.04 | 28.68 | 24.74 | 24.41 | |
| B_med | 24 | 27 | 24 | 27 | 23 | 23 | |
| KS_test | 0.27 | 0.24 | 0.25 | 0.23 | 0.28 | 0.31 | |
| Area% | 6.45 | 8.34 | 13.93 | 16.93 | 7.55 | 4.24 | |
| PPT_1.0 | Area% | 30.12 | 25.83 | 44.06 | 57.16 | 26.84 | 16.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, D.; Rigge, M. Understanding the Anomalies in Exotic Annual Grass Cover in Precipitation Scenario Maps of Rangelands in the Western United States. Remote Sens. 2025, 17, 3821. https://doi.org/10.3390/rs17233821
Dahal D, Rigge M. Understanding the Anomalies in Exotic Annual Grass Cover in Precipitation Scenario Maps of Rangelands in the Western United States. Remote Sensing. 2025; 17(23):3821. https://doi.org/10.3390/rs17233821
Chicago/Turabian StyleDahal, Devendra, and Matthew Rigge. 2025. "Understanding the Anomalies in Exotic Annual Grass Cover in Precipitation Scenario Maps of Rangelands in the Western United States" Remote Sensing 17, no. 23: 3821. https://doi.org/10.3390/rs17233821
APA StyleDahal, D., & Rigge, M. (2025). Understanding the Anomalies in Exotic Annual Grass Cover in Precipitation Scenario Maps of Rangelands in the Western United States. Remote Sensing, 17(23), 3821. https://doi.org/10.3390/rs17233821

