High-Resolution GPR Surveys to Investigate the Internal Structure of Pillars Inside the Cathedral of San Giorgio in Ragusa Ibla (Sicily, Italy)
Highlights
- The high-resolution GPR approach has proven essential in reconstructing the internal layout of pillars in the Cathedral of San Giorgio (Ragusa Ibla, Sicily, Italy).
- The applied approach enabled the identification of key construction elements and jointing methods, offering a non-invasive, high-resolution tool for understanding the structure and informing conservation strategies for heritage architecture.
- The methodological workflow presented provides a reference framework for the non-invasive assessment of similar architectural elements in complex historical contexts.
Abstract
1. Introduction
2. Study Site
3. Materials and Methods
3.1. Data Acquisition
3.2. Methodological Aspects: Resolution Ranges and Features Identification
- The positioning accuracy is also influenced by the GPR signal sampling frequencies in both space and time. These values are calculated by the Nyquist-Shannon sampling theorem [26], which determines the lower limit of the frequency that can be measured without time aliasingand the lower limit which can be considered as spatial aliasingso means the maximum wave number (number of times a wave vibrates in a unit distance). Table 3 presents the values for the choice antenna. These results indicate that the choice of sampling parameters reported in Table 1 is appropriate for this study.
- 2.
- For the 2 GHz antenna, the transmitter (T) and receiver (R) sensors are spaced 5.8 cm apart (T-R offset). This T-R offset is significant for the investigated pillars and its value describes a higher “fuzzy” level in the raw data which can be refined in the processing flow if some signal characteristics are considered (Figure 4). The first signal in a 2D-GPR profile (or B-scan) is known as the “direct coupling” between T-R. In raw B-scans, direct coupling appears as straight horizontal bands on top of the data window (Figure 4). The signal reaches the receiver before penetrating the medium, in this case occurring after 0.4 ns or 0.04 m considering the velocities of the air-sandstone. This signal combines the air wave and surface reflection from the top of the medium (top of face pillars), so the direct coupling provides limited information about the upper part of the face. However, the amplitude is influenced by the dielectric constant and any variations in amplitude may indicate changes in material features (e.g., increased humidity). For an antenna with frequency of 2 GHz, direct coupling enables the detection of targets located about ~0.02 m beneath the surface, as well as the accurate determination of their depths.
3.3. Data Processing Flow
4. Results
4.1. General Modelling
4.2. Detailed Reconstruction of the Inner Structure of the Pillars
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GPR | Ground Penetrating Radar |
| UNESCO | United Nations Education, Scientific and Cultural Organization |
| EM | Electromagnetic |
| IDW | Inverse Distance Weighted |
| CMS | Coherent Mean Stacking |
References
- Barone, P.M.; Ruffell, A.; Tsokas, G.N.; Rizzo, R. Geophysical Surveys for archaeology and Cultural Heritage Preservation. Heritage 2019, 2, 2814–2817. [Google Scholar] [CrossRef]
- Deiana, R.; Deidda, G.P.; Cusí, E.D.; van Dommelen, P.; Stiglitz, A. FDEM and ERT measurements for archaeological prospections at Nuraghe S’Urachi (West-Central Sardinia). Archaeol. Prospect. 2022, 29, 69–86. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P.; Pisciotta, A.; Scudero, S.; Bottari, C. An overview of geophysical techniques and their potential suitability for archaeological studies. Heritage 2023, 6, 2886–2927. [Google Scholar] [CrossRef]
- Imposa, S.; Grassi, S.; Morreale, G.; Pirrotta, C.; Cavalier, L.; Gilotti, A.; Giuliano, D.; Cayre, E.; Calio, L.M. New discovery of an ancient building in Akragas (Valley of Temples, Agrigento, Italy) through the integration of geophysical surveys. J. Archaeol. Sci. Rep. 2024, 53, 104368. [Google Scholar] [CrossRef]
- Hamrouche, R.; Klysz, G.; Balayssac, J.P.; Laurens, S.; Rhazi, J.; Ballivy, G.; Arliguie, G. Numerical modeling of ground-penetrating radar (GPR) for the investigation of jointing defects in brick masonry structures. In Proceedings of the NDTCE’09, Non-Destructive Testing in Civil Engineering, Nantes, France, 30 June–3 July 2009. [Google Scholar]
- Imposa, S.; Grassi, S.; Barone, I.; Censini, M.; Morreale, G. Combined GPR and seismic refraction tomography to study the subsoil in the Cathedral of S. Giorgio Ragusa-Ibla (Sicily). In Proceedings of the 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Valletta, Malta, 1–4 December 2021. [Google Scholar] [CrossRef]
- Işık, N. Investigation of structural problems on the ground and walls of Diyarbakir Historical Behram Pasha Mosque by the georadar (GPR) method. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg. 2021, 12, 689–698. Available online: https://dergipark.org.tr/en/download/article-file/2000333 (accessed on 20 June 2025). [CrossRef]
- Johnston, B.; Ruffell, A.; McKinley, J.; Warke, P. Detecting voids within a historical building façade: A comparative study of three high frequency GPR antenna. J. Cult. Herit. 2018, 32, 117–123. [Google Scholar] [CrossRef]
- Kanli, A.I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E. GPR survey for reinforcement of historical heritage construction at fire tower of Sopron. J. Appl. Geophys. 2015, 112, 79–90. [Google Scholar] [CrossRef]
- Leucci, G.; Cataldo, R.; De Nunzio, G. Assessment of fractures in some columns inside the crypt of the Cattedrale di Otranto using integrated geophysical methods. J. Archaeol. Sci. 2007, 34, 222–232. [Google Scholar] [CrossRef]
- Lombardi, F.; Lualdi, M.; Garavaglia, E. Masonry texture reconstruction for building seismic assessment: Practical evaluation and potentials of Ground Penetrating Radar methodology. Constr. Build. Mater. 2021, 299, 124189. [Google Scholar] [CrossRef]
- Martini, R.; Carvalho, J.; Barraca, N.; Arêde, A.; Varum, H. Advances on the use of non-destructive techniques for mechanical characterization of stone masonry: GPR and sonic tests. Procedia Struct. Integr. 2017, 5, 1108–1115. [Google Scholar] [CrossRef]
- Perez-Gracia, V.; Santos-Assunçao, S.; Caselles, O.; Clapes, J.; Sossa, V. Combining ground penetrating radar and seismic surveys in the assessment of cultural heritage buildings: The study of roofs, columns, and ground of the gothic church S anta M aria del Mar, in B arcelona (S pain). Struct. Control Health Monit. 2019, 26, 2327. [Google Scholar] [CrossRef]
- Caldeira, B.; Oliveira, R.J.; Teixidó, T.; Borges, J.F.; Henriques, R.; Carneiro, A.; Peña, J.A. Studying the Construction of Floor Mosaics in the Roman Villa of Pisões (Portugal) Using Noninvasive Methods: High-Resolution 3D GPR and Photogrammetry. Remote Sens. 2019, 11, 1882. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V.; Mauriello, P.; Zullo, E. Combined use of 3D metric survey and GPR for the diagnosis of the trapezophoros with two griffins attacking a Doe of Ascoli Satriano (Foggia, Italy). Geosci. J. 2020, 10, 307. [Google Scholar] [CrossRef]
- Cozzolino, M.; De Simone, A.; Gentile, V.; Mauriello, P.; Piezzo, A. GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy). Appl. Sci. 2022, 12, 6965. [Google Scholar] [CrossRef]
- Kadioglu, S.; Kadioglu, Y.K. Picturing internal fractures of historical statues using ground penetrating radar method. Adv. Geosci. 2010, 24, 23–34. [Google Scholar] [CrossRef]
- Martinho, E.; Dionisio, A. Nondestructive and micro-invasive techniques for stone cultural heritage diagnosis: An overview. In Advances in Materials Science Research; Nova Publishers: New York, NY, USA, 2016; Volume 22, pp. 1–30. ISBN 978-1-63483-759-0. [Google Scholar]
- Imposa, G.; Grassi, S.; Barontini, A.; Morreale, G.; Russo, S.; Lourenço, P.B.; Imposa, S. Extended tromograph surveys for a full experimental characterisation of the San Giorgio Cathedral in Ragusa (Italy). Sensors 2023, 23, 889. [Google Scholar] [CrossRef] [PubMed]
- Nifosi, P.; Leoni, G. Mastri e Maestri Nell’architettura Iblea; Silvana, Ed.; Cinisello Balsamo: Milano, Italy, 1998. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: London, UK, 2008. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Daniels, J.J. Ground penetrating radar fundamentals. In Prepared as an Appendix to a Report to the US EPA; EPA: Washington, DC, USA, 2000; pp. 1–21. [Google Scholar]
- Harry, J. Ground Penetrating Radar Theory and Applications, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2009; p. 544. [Google Scholar]
- Oliveira, R.J.B. Prospeção Geofísica Aplicada à Arqueologia. Ph.D. Thesis, Universidade de Evora, Évora, Portugal, 2020. [Google Scholar]
- Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data; Society of Exploration Geophysicists: Houston, TX, USA, 2001. [Google Scholar]
- Peña, J.A.; Teixidó Ullod, T. Cover surfaces as a new technique for 3D GPR image enhancement. Archaeol. Appl. 2013, 1–10. Available online: http://hdl.handle.net/10481/22949 (accessed on 15 May 2025).
- Martinez, A.; Byrnes, A.P. Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation. Curr. Res. Earth Sci. 2001, 247 Pt 1, 1–16. [Google Scholar] [CrossRef]
- Dou, Q.; Wei, L.; Magee, D.R.; Cohn, A.G. Real-time hyperbola recognition and fitting in GPR data. IEEE Trans. Geosci. Remote Sens. 2016, 55, 51–62. [Google Scholar] [CrossRef]
- He, W.; Lai, W.W.L. Unified optimization-based analysis of GPR hyperbolic fitting models. Tunn. Undergr. Space Technol. 2024, 146, 105633. [Google Scholar] [CrossRef]
- Wunderlich, T.; Wilken, D.; Majchczack, B.S.; Segschneider, M.; Rabbel, W. Hyperbola detection with RetinaNet and comparison of hyperbola fitting methods in GPR data from an archaeological site. Remote Sens. 2022, 14, 3665. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM National Conference, Princeton, NJ, USA, 1 January 1968. [Google Scholar]
- Goodman, D. GPR Slice Version 7.0 Manual; GPR-Slice: Woodland Hills, CA, USA, 2013. [Google Scholar]
- Teixidó, T.; Peña, J.A.; Fernández, G.; Burillo, F.; Mostaza, T.; Zancajo, J. Ultradense Topographic Correction by 3D-Laser Scanning in Pseudo-3D Ground-penetrating Radar Data: Application to the Constructive Pattern of the Monumental Platform at the Segeda I Site (Spain). Archaeol. Prospect. 2014, 21, 113–123. [Google Scholar] [CrossRef]
- Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- van Zyl, J.J.; Ulaby, F.T. Scattering matrix representations for simple targets. In Radar Polarimetry for Geoscience Applications; Artech House: Norwood, MA, USA, 1990; pp. 17–52. [Google Scholar]
- Olhoeft, G.R. Maximizing the information return from ground penetrating radar. J. Appl. Geophys. 2000, 43, 175–187. [Google Scholar] [CrossRef]
- Xiang, Z.; Rashidi, A.; Ou, G.G. States of practice and research on applying GPR technology for labeling and scanning constructed facilities. J. Perform. Constr. Facil. 2019, 33, 03119001. [Google Scholar] [CrossRef]








| Antenna | 2 GHz |
|---|---|
| Time range | 10 ns |
| Scans/m | 800 |
| Samples/trace | 256 |
| Bit sample | 32 |
| Profile spacing (m) | 0.05 |
| Antenna | Pulse (ns) | Wavelength Pulse (cm) | ε (s) | V (m/ns) | Δz (cm) | Δl (cm) |
|---|---|---|---|---|---|---|
| 2 GHz | 0.5 | 1.5 | 5 | 0.1 | 1 (at 0.5 m depth) | 1.25 |
| Antenna | Time Sampling (ns) | Nyquist Frequency (MHz) | Time Spacing (m) | Nyquist Wave Number (m−1) |
|---|---|---|---|---|
| 2 GHz | 0.5 | 12.5 × 103 | 1.25 × 10−3 | 400 |
| 2 GHz Antenna | |
| Lateral X resolution (cm) | 2–3 |
| Lateral Y resolution (cm) | 2.5 |
| Depth Z resolution | |
| “Fuzzy” top level (cm) | 1.8 |
| Maximum depth | 1 cm (at 4 cm depth) 4 cm (at 40 cm depth) |
| 2 GHz | |
|---|---|
| Time 0 correction | −7 ns |
| Gain correction | Constant in time window |
| Kirchhoff migration | V = 0.1 m/ns |
| Bandpass filter | 1200–2800 MHz |
| Dielectric constant | 5 |
| Pillar | Anomaly Type | Location | Depth (m) | Description |
|---|---|---|---|---|
| Pillar 1 | Major Discontinuity | F1 | 0.10–0.50 | Separates outer and inner portions |
| Pillar 1 | Minor Discontinuity | F6 | 0.05–0.20 | Possible repair indication |
| Pillar 2 | Elongated Anomaly | F1, F3 | 0.16–0.70 | Major Structural Discontinuities |
| Pillar 2 | Smaller Void/Cavity | Various Faces | 0.10–0.30 | Minor voids or cavities not visible on the surface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morreale, G.; Grassi, S.; Araque-Pérez, C.J.; Teixidó, T.; Imposa, S. High-Resolution GPR Surveys to Investigate the Internal Structure of Pillars Inside the Cathedral of San Giorgio in Ragusa Ibla (Sicily, Italy). Remote Sens. 2025, 17, 3710. https://doi.org/10.3390/rs17223710
Morreale G, Grassi S, Araque-Pérez CJ, Teixidó T, Imposa S. High-Resolution GPR Surveys to Investigate the Internal Structure of Pillars Inside the Cathedral of San Giorgio in Ragusa Ibla (Sicily, Italy). Remote Sensing. 2025; 17(22):3710. https://doi.org/10.3390/rs17223710
Chicago/Turabian StyleMorreale, Gabriele, Sabrina Grassi, Carlos José Araque-Pérez, Teresa Teixidó, and Sebastiano Imposa. 2025. "High-Resolution GPR Surveys to Investigate the Internal Structure of Pillars Inside the Cathedral of San Giorgio in Ragusa Ibla (Sicily, Italy)" Remote Sensing 17, no. 22: 3710. https://doi.org/10.3390/rs17223710
APA StyleMorreale, G., Grassi, S., Araque-Pérez, C. J., Teixidó, T., & Imposa, S. (2025). High-Resolution GPR Surveys to Investigate the Internal Structure of Pillars Inside the Cathedral of San Giorgio in Ragusa Ibla (Sicily, Italy). Remote Sensing, 17(22), 3710. https://doi.org/10.3390/rs17223710

