Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018)
Highlights
- Multi-decadal Landsat analysis shows persistent park cooling.
- Vegetation moisture drives stronger cooling than greenness.
- Urban parks act as long-term heat mitigation assets.
- Water management in green spaces boosts cooling benefits.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Integration
2.3. Satellite Data and Preprocessing
2.4. Trend and Statistical Analyses
3. Results
3.1. Long-Term LST Patterns and Park Cooling Intensity
3.2. Relationships Between LST and Vegetation (NDVI, NDMI)
4. Discussion
4.1. Park Cooling Magnitude and Stability Compared to Other Studies
4.2. Drivers of Park Cooling and Climate Context
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CLC | CORINE Land Cover |
| CI | Confidence Interval |
| EEA | European Environment Agency |
| EPSG | Coordinate Reference System identifier (EPSG code) |
| ETM+ | Enhanced Thematic Mapper Plus |
| GEE | Google Earth Engine |
| IQR | Interquartile Range |
| LST | Land Surface Temperature |
| NDMI | Normalized Difference Moisture Index |
| NDVI | Normalized Difference Vegetation Index |
| OLI | Operational Land Imager |
| OLS | Ordinary Least Squares (regression) |
| PCI | Park Cool Island |
| QA_PIXEL | Quality Assessment pixel band (Landsat L2) |
| Q25 | 25th percentile |
| Q75 | 75th percentile |
| QGIS | Quantum GIS |
| SC | Single-Channel (LST retrieval) |
| SD | Standard Deviation |
| SUHI | Surface Urban Heat Island |
| Ta | Air temperature |
| TIRS | Thermal Infrared Sensor |
| TM | Thematic Mapper |
| UA | Urban Atlas |
| UHI | Urban Heat Island |
| UTC | Coordinated Universal Time |
| UTM | Universal Transverse Mercator |
| USGS | United States Geological Survey |
| WGS 84 | World Geodetic System 1984 |
| WRS-2 | Worldwide Reference System-2 (Landsat path/row) |
| ΔLST | Park–urban LST difference (LST_park − LST_urban) |
Appendix A
| Satellite | WRS-2 Path/Row | Date (yyyy-mm-dd) | UTC time (hh:mm:ss) | Scene ID (LANSAT_ID) |
|---|---|---|---|---|
| Landsat 5 | 188/25 | 1990-05-04 | 08:52:35 | LT05_188025_19900504 |
| Landsat 5 | 188/25 | 2000-05-15 | 09:08:13 | LT05_188025_20000515 |
| Landsat 8 | 188/25 | 2013-05-19 | 09:34:27 | LC08_188025_20130519 |
| Landsat 8 | 188/25 | 2018-05-01 | 09:31:37 | LC08_188025_20180501 |
| Variable | Year | Zone | Mean | SD | Q25 | Q75 | IQR | Min | Max | n |
|---|---|---|---|---|---|---|---|---|---|---|
| LST | 1990 | 0 m | 17.547 | 0.155 | 17.457 | 17.615 | 0.158 | 17.387 | 17.750 | 4.000 |
| LST | 1990 | 150 m | 19.705 | 0.379 | 19.565 | 19.869 | 0.304 | 19.220 | 20.140 | 4.000 |
| LST | 1990 | 300 m | 19.852 | 0.450 | 19.690 | 19.987 | 0.297 | 19.330 | 20.430 | 4.000 |
| LST | 2000 | 0 m | 20.306 | 0.334 | 20.198 | 20.508 | 0.309 | 19.833 | 20.590 | 4.000 |
| LST | 2000 | 150 m | 22.664 | 0.583 | 22.511 | 22.870 | 0.359 | 21.900 | 23.320 | 4.000 |
| LST | 2000 | 300 m | 23.020 | 0.640 | 22.854 | 23.285 | 0.431 | 22.150 | 23.690 | 4.000 |
| LST | 2013 | 0 m | 22.102 | 0.214 | 22.012 | 22.245 | 0.233 | 21.810 | 22.290 | 4.000 |
| LST | 2013 | 150 m | 23.997 | 0.531 | 23.788 | 24.325 | 0.537 | 23.270 | 24.490 | 4.000 |
| LST | 2013 | 300 m | 24.280 | 0.757 | 23.918 | 24.787 | 0.870 | 23.280 | 24.990 | 4.000 |
| LST | 2018 | 0 m | 22.987 | 0.449 | 22.730 | 23.113 | 0.383 | 22.610 | 23.630 | 4.000 |
| LST | 2018 | 150 m | 25.073 | 0.786 | 24.593 | 25.365 | 0.773 | 24.360 | 26.160 | 4.000 |
| LST | 2018 | 300 m | 25.578 | 0.949 | 24.908 | 26.180 | 1.272 | 24.600 | 26.690 | 4.000 |
| NDMI | 1990 | 0 m | 0.592 | 0.027 | 0.575 | 0.600 | 0.025 | 0.570 | 0.630 | 4.000 |
| NDMI | 1990 | 150 m | 0.451 | 0.069 | 0.413 | 0.468 | 0.054 | 0.393 | 0.550 | 4.000 |
| NDMI | 1990 | 300 m | 0.450 | 0.055 | 0.417 | 0.463 | 0.045 | 0.409 | 0.530 | 4.000 |
| NDMI | 2000 | 0 m | 0.700 | 0.018 | 0.688 | 0.712 | 0.024 | 0.680 | 0.720 | 4.000 |
| NDMI | 2000 | 150 m | 0.561 | 0.046 | 0.537 | 0.583 | 0.046 | 0.510 | 0.620 | 4.000 |
| NDMI | 2000 | 300 m | 0.534 | 0.045 | 0.513 | 0.540 | 0.027 | 0.500 | 0.600 | 4.000 |
| NDMI | 2013 | 0 m | 0.405 | 0.024 | 0.388 | 0.422 | 0.035 | 0.380 | 0.430 | 4.000 |
| NDMI | 2013 | 150 m | 0.330 | 0.042 | 0.310 | 0.350 | 0.040 | 0.280 | 0.380 | 4.000 |
| NDMI | 2013 | 300 m | 0.318 | 0.061 | 0.280 | 0.353 | 0.073 | 0.250 | 0.390 | 4.000 |
| NDMI | 2018 | 0 m | 0.402 | 0.028 | 0.385 | 0.422 | 0.037 | 0.370 | 0.430 | 4.000 |
| NDMI | 2018 | 150 m | 0.300 | 0.018 | 0.287 | 0.312 | 0.025 | 0.280 | 0.320 | 4.000 |
| NDMI | 2018 | 300 m | 0.283 | 0.039 | 0.255 | 0.312 | 0.057 | 0.240 | 0.320 | 4.000 |
| NDVI | 1990 | 0 m | 0.569 | 0.035 | 0.553 | 0.575 | 0.022 | 0.540 | 0.620 | 4.000 |
| NDVI | 1990 | 150 m | 0.516 | 0.052 | 0.486 | 0.530 | 0.044 | 0.472 | 0.590 | 4.000 |
| NDVI | 1990 | 300 m | 0.520 | 0.041 | 0.497 | 0.527 | 0.030 | 0.489 | 0.580 | 4.000 |
| NDVI | 2000 | 0 m | 0.712 | 0.030 | 0.695 | 0.726 | 0.031 | 0.680 | 0.750 | 4.000 |
| NDVI | 2000 | 150 m | 0.626 | 0.034 | 0.614 | 0.645 | 0.031 | 0.580 | 0.660 | 4.000 |
| NDVI | 2000 | 300 m | 0.608 | 0.030 | 0.595 | 0.613 | 0.018 | 0.580 | 0.650 | 4.000 |
| NDVI | 2013 | 0 m | 0.858 | 0.022 | 0.845 | 0.873 | 0.028 | 0.830 | 0.880 | 4.000 |
| NDVI | 2013 | 150 m | 0.745 | 0.034 | 0.730 | 0.765 | 0.035 | 0.700 | 0.780 | 4.000 |
| NDVI | 2013 | 300 m | 0.725 | 0.050 | 0.705 | 0.750 | 0.045 | 0.660 | 0.780 | 4.000 |
| NDVI | 2018 | 0 m | 0.870 | 0.022 | 0.857 | 0.877 | 0.020 | 0.850 | 0.900 | 4.000 |
| NDVI | 2018 | 150 m | 0.742 | 0.030 | 0.725 | 0.758 | 0.033 | 0.710 | 0.780 | 4.000 |
| NDVI | 2018 | 300 m | 0.713 | 0.043 | 0.690 | 0.738 | 0.048 | 0.660 | 0.760 | 4.000 |
References
- Nazarian, N.; Krayenhoff, E.S.; Bechtel, B.; Hondula, D.M. Integrated Assessment of Urban Overheating Impacts on Human Life. Earths Future 2022, 10, e2022EF002706. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107429536. [Google Scholar]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Lee, X. Surface Urban Heat Island across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS-Detected Surface Urban Heat Islands and Sinks: Global Locations and Controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Radiometric Continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ Surface Reflectance Products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Vermote, E.F.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A Generalized Single-Channel Method for Retrieving Land Surface Temperature from Remote Sensing Data. J. Geophys. Res. Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef]
- Ng, E.; Ren, C. China’s Adaptation to Climate and Urban Climatic Changes: A Critical Review. Urban Clim. 2018, 23, 352–372. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Yao, Y. Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images. Sensors 2019, 19, 5049. [Google Scholar] [CrossRef]
- Almeida, C.R.; Silva, T.; Rodrigues, C. Study of the UHI Using Remote Sensing and LST: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Lauwaet, D.; Berckmans, J.; Hooyberghs, H.; Wouters, H.; Driesen, G.; Lefebre, F.; De Ridder, K. High-Resolution Modelling of the Urban Heat Island of 100 European Cities (2008–2017). Urban Clim. 2024, 54, 101850. [Google Scholar] [CrossRef]
- Spencer, R.W.; Christy, J.R.; Braswell, W.D. Urban Heat Island Effects in U.S. Summer Surface Temperature Data, 1895–2023. J. Appl. Meteorol. Clim. 2025, 64, 717–728. [Google Scholar] [CrossRef]
- Givoni, B. Impact of Planted Areas on Urban Environmental Quality: A Review. Atmos. Environ. Part B 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Blue Space to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Xie, Q.; Li, J. Detecting the Cool Island Effect of Urban Parks in Wuhan: A City on Rivers. Int. J. Environ. Res. Public Health 2021, 18, 132. [Google Scholar] [CrossRef]
- Blachowski, J.; Hajnrych, M. Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw (Poland). Forests 2021, 12, 1136. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal Variations in the Cooling Effect of Urban Green Areas on Surrounding Urban Areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. One Large Greenspace Mitigating London’s Nocturnal Urban Heat Island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.; Schwarz, N. The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- García-Haro, A.; Arellano, B.; Roca, J. Design and Location Influence on Park Cool Island of the Urban Parks of Barcelona. J. Appl. Remote Sens. 2023, 17, 034512. [Google Scholar] [CrossRef]
- Ogce, S.; Ogce, H.; Yu, S.; Brown, R.D. The Interaction between Urban Heat Island and Urban Parks: An In-Situ Measurement-Based Review. Land Use Policy 2025, 157, 107628. [Google Scholar] [CrossRef]
- Kraemer, R.; Kabisch, N. Parks Under Stress: Air Temperature Regulation of Urban Green Spaces Under Conditions of Drought and Summer Heat. Front. Environ. Sci. 2022, 10, 849965. [Google Scholar] [CrossRef]
- Cheung, P.K.; Livesley, S.J.; Nice, K.A. Estimating the Cooling Potential of Irrigating Green Spaces in 100 Global Cities with Arid, Temperate or Continental Climates. Sustain. Cities Soc. 2021, 71, 102974. [Google Scholar] [CrossRef]
- Agathangelidis, I.; Blougouras, G.; Cartalis, C.; Polydoros, A.; Tzanis, C.G.; Philippopoulos, K. Global Climatology of the Daytime Surface Cooling of Urban Parks Using Satellite Observations. Geophys. Res. Lett. 2025, 52, e2024GL112887. [Google Scholar] [CrossRef]
- Matuszko, A.; Mikołajczyk, D.; Matuszko, D. Zmiany Klimatu Krakowa i Adaptacja Do Nich w Kontekście Uwarunkowań Planistycznych. Pr. Geogr. 2023, 170, 99–118. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. Thermal Stress During Heat Waves and Cold Spells in Poland. Weather. Clim. Extrem. 2023, 42, 100612. [Google Scholar] [CrossRef]
- Krakowska, M. Raport o Stanie Metropolii Krakowskiej Za 2023 Rok; Stowarzyszenie Metropolia Krakowska: Kraków, Poland, 2024. [Google Scholar]
- Krzyżewska, A.; Wereski, S.; Dobek, M. Summer UTCI Variability in Poland in the Twenty-First Century. Int. J. Biometeorol. 2021, 65, 1497–1513. [Google Scholar] [CrossRef]
- Las Wolski (Wolski Forest)—Official City Tourism Portal. 2025. Available online: https://krakow.travel (accessed on 30 July 2025).
- Zabierzów, G. Las Zabierzowski—Walory Krajobrazowe (Official Municipal Page). 2024. Available online: https://zabierzow.org.pl (accessed on 30 July 2025).
- Krakow City Office. Poznaj Planty—Official City Page (Planty Park). 2019. Available online: https://www.krakow.pl (accessed on 30 July 2025).
- Krakow City Office. Program Ochrony Przyrody w Krakowie Na Lata 2019–2030 (Aneks II: Ochrona Przyrody); Biuletyn Informacji Publicznej: Warsaw, Poland, 2019; Available online: https://www.krakow.pl (accessed on 30 July 2025).
- European Environment Agency. CORINE Land Cover—Nomenclature Guidelines (Level-3 Classes); European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- European Environment Agency. CORINE Land Cover 2018—Technical Guidelines; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Copernicus. Urban Atlas 2018. Copernicus Land Monitoring Service. 2021. Available online: https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018 (accessed on 1 May 2025).
- CLM Service. Urban Atlas: Vector Land Cover Data; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the Cool Island Effects of Urban Green Spaces Using Remote Sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel–Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristóbal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from Landsat TM5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Geological Survey (USGS). USGS Landsat 8–9 Collection 2 Level-2 Surface Temperature (ST) Product Guide; Geological Survey (USGS): Reston, VA, USA, 2021.
- Geological Survey (USGS). USGS Landsat 4–7 Collection 2 Level-2 Science Products Guide; Geological Survey (USGS): Reston, VA, USA, 2021.
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A Modified Mann–Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470436848. [Google Scholar]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Głowienka, E.; Kucza, M. Urban Park Vegetation Indices (NDVI, NDMI) and Local Cooling in Krakow: A Linear Mixed-Effects Model Analysis of Landsat LST. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025; submitted. [Google Scholar]




| Year | 0 m (Park Interior) | 150 m Buffer | 300 m Buffer |
|---|---|---|---|
| 1990 | 17.55 ± 0.15 °C | 19.70 ± 0.38 °C | 19.85 ± 0.45 °C |
| 2000 | 20.31 ± 0.33 °C | 22.66 ± 0.58 °C | 23.02 ± 0.64 °C |
| 2013 | 22.10 ± 0.21 °C | 24.00 ± 0.53 °C | 24.28 ± 0.76 °C |
| 2018 | 22.99 ± 0.45 °C | 25.07 ± 0.79 °C | 25.58 ± 0.95 °C |
| Year | ΔLST (0–150 m) °C (95% CI) | ΔLST (150–300 m) °C (95% CI) |
|---|---|---|
| 1990 | −2.16 (−2.48, −1.70) | −2.31 (−2.73, −1.80) |
| 2000 | −2.36 (−2.94, −1.70) | −2.71 (−3.31, −1.98) |
| 2013 | −1.90 (−2.21, −1.43) | −2.18 (−2.65, −1.51) |
| 2018 | −2.09 (−2.51, −1.66) | −2.59 (−3.23, −1.95) |
| Year | r(LST, NDVI) | r(LST, NDMI) |
|---|---|---|
| 1990 | −0.665 | −0.889 |
| 2000 | −0.944 | −0.984 |
| 2013 | −0.942 | −0.898 |
| 2018 | −0.915 | −0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowienka, E.; Kucza, M. Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018). Remote Sens. 2025, 17, 3608. https://doi.org/10.3390/rs17213608
Głowienka E, Kucza M. Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018). Remote Sensing. 2025; 17(21):3608. https://doi.org/10.3390/rs17213608
Chicago/Turabian StyleGłowienka, Ewa, and Marcin Kucza. 2025. "Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018)" Remote Sensing 17, no. 21: 3608. https://doi.org/10.3390/rs17213608
APA StyleGłowienka, E., & Kucza, M. (2025). Persistent Urban Park Cooling Effects in Krakow: A Satellite-Based Analysis of Land Surface Temperature Patterns (1990–2018). Remote Sensing, 17(21), 3608. https://doi.org/10.3390/rs17213608
