The Evolution of the Mars Year (MY) 35 Anomalous Spring Dust Storm and Its Influence on the Chryse and Utopia Plains
Highlights
- The evolution of the Mars Year 35 anomalous spring dust storm was studied in four phases. The evolution characteristics of the spring dust storm are similar to those of the MY 35 C storm, suggesting that the two storms may have similar evolutionary mechanisms.
- The Mars Year 35 anomalous spring dust storm impacts the atmospheric thermal structures and global circulation. Wind speeds at the surface and at high altitudes increase significantly in specific regions during the storm.
- The study of changes in the wind field during the spring dust storm in the Chryse and Utopia plains can offer necessary environmental parameters related to spring dust storms for China’s Tianwen-3 mission.
Abstract
1. Introduction
2. Data and Methods
2.1. The MCS Data
2.2. The LMD-GCM
3. Results
3.1. The Evolution of the MY 35 Spring Dust Storm
3.1.1. The Horizontal Evolution of MY 35 E Dust Storm
3.1.2. The Vertical Evolution of MY 35 E Storm
3.1.3. The Surface Dust Source of the MY 35 E Dust Storm
3.2. Comparison with Other Types of Regional Dust Storms
3.2.1. The Comparison of Dust Storm Evolution
3.2.2. The Comparison of the Thermal Structure During Different Dust Storms
3.3. The Variation in Wind Fields During the MY 35 E Storm
3.3.1. The Zonal Mean Wind Field During the MY 35 E Storm
3.3.2. The Effect of MY 35 E Storm on Surface Horizontal Wind Speeds
3.4. The Impact of MY 35 E Storm on Near-Surface Wind Fields in the Chryse and Utopia Plains
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MY | Martian year |
| MCS | Mars Climate Sounder |
| MRO | Mars Reconnaissance Orbiter |
| LMD-GCM | Laboratoire de Météorologie Dynamique Martian Global Climate Model |
| MCD | Mars Climate Database |
| CDOD | Column dust optical depth |
| Ls | solar longitude |
References
- Kahre, M.A.; Murphy, J.R.; Newman, C.E.; Wilson, R.J.; Cantor, B.A.; Lemmon, M.T.; Wolff, M.J. The Mars Dust Cycle. In The Atmosphere and Climate of Mars; Haberle, R.M., Clancy, R.T., Forget, F., Smith, M.D., Zurek, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 295–337. ISBN 978-1-139-06017-2. [Google Scholar]
- Montabone, L.; Spiga, A.; Kass, D.M.; Kleinböhl, A.; Forget, F.; Millour, E. Martian Year 34 Column Dust Climatology from Mars Climate Sounder Observations: Reconstructed Maps and Model Simulations. JGR Planets 2020, 125, e2019JE006111. [Google Scholar] [CrossRef]
- Smith, M.D.; Pearl, J.C.; Conrath, B.J.; Christensen, P.R. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution. J. Geophys. Res. Planets 2001, 106, 23929–23945. [Google Scholar] [CrossRef]
- Kass, D.M.; Kleinböhl, A.; McCleese, D.J.; Schofield, J.T.; Smith, M.D. Interannual Similarity in the Martian Atmosphere During the Dust Storm Season. Geophys. Res. Lett. 2016, 43, 6111–6118. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.; Li, J.; Cui, J. Earth-Like Thermal and Dynamical Coupling Processes in the Martian Climate System. Earth-Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Wang, H.; Richardson, M.I. The Origin, Evolution, and Trajectory of Large Dust Storms on Mars During Mars Years 24–30 (1999–2011). Icarus 2015, 251, 112–127. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Lemmon, M.; Smith, C.L.; Martínez, G.; De Vicente-Retortillo, Á.; Newman, C.E.; Baker, M.; Campbell, C.; Cooper, B.; Gómez-Elvira, J.; et al. Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophys. Res. Lett. 2019, 46, 71–79. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Chen, A.; Barnes, J.R.; Burkhart, P.D.; Cantor, B.A.; Dwyer-Cianciolo, A.M.; Fergason, R.L.; Hinson, D.P.; Justh, H.L.; Kass, D.M.; et al. Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations. Space Sci. Rev. 2012, 170, 793–835. [Google Scholar] [CrossRef]
- Wang, H.; Saidel, M.; Richardson, M.I.; Toigo, A.D.; Battalio, J.M. Martian Dust Storm Distribution and Annual Cycle from Mars Daily Global Map Observations. Icarus 2023, 394, 115416. [Google Scholar] [CrossRef]
- Tian, Y.; Li, B.; Rong, Z.; Qu, S.; Chen, S. Martian Dust Storm Spatial-Temporal Analysis of Tentative Landing Areas for China’s Tianwen-3 Mars Mission. Earth Space Sci. 2024, 11, e2024EA003634. [Google Scholar] [CrossRef]
- Battalio, M.; Wang, H. The Mars Dust Activity Database (MDAD): A Comprehensive Statistical Study of Dust Storm Sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
- Martín-Rubio, C.; Vicente-Retortillo, A.; Martínez-Esteve, G.; Gómez, F.; Rodríguez-Manfredi, J.A. Global Characterization of the Early-Season Dust Storm of Mars Year 36. Icarus 2025, 426, 116369. [Google Scholar] [CrossRef]
- Gillespie, H.E.; Greybush, S.J.; Wilson, R.J. An Investigation of the Encirclement of Mars by Dust in the 2018 Global Dust Storm Using EMARS. JGR Planets 2020, 125, e2019JE006106. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Fedorova, A.A.; Kahre, M.A.; Toigo, A.D. Studies of the 2018/Mars Year 34 Planet-Encircling Dust Storm. JGR Planets 2020, 125, e2020JE006700. [Google Scholar] [CrossRef]
- Heavens, N.G.; Kass, D.M.; Shirley, J.H.; Piqueux, S.; Cantor, B.A. An Observational Overview of Dusty Deep Convection in Martian Dust Storms. J. Atmospheric Sci. 2019, 76, 3299–3326. [Google Scholar] [CrossRef]
- Zurita-Zurita, S.; De La Torre Juárez, M.; Newman, C.E.; Viúdez-Moreiras, D.; Kahanpää, H.T.; Harri, A.-M.; Lemmon, M.T.; Pla-García, J.; Rodríguez-Manfredi, J.A. Mars Surface Pressure Oscillations as Precursors of Large Dust Storms Reaching Gale. JGR Planets 2022, 127, e2021JE007005. [Google Scholar] [CrossRef]
- He, H.; Wu, Z.; Rong, Z.; He, F.; Li, B.; Zhang, J.; Wang, Y.; Gao, J.; Fan, K.; Wei, Y. A Statistical Study of the Interannual Variability of the Dusty Season on Mars Based on Column Dust Optical Depth. Quat. Sci. 2025, 45, 882–893. [Google Scholar] [CrossRef]
- Kass, D.M.; Kleinböhl, A.; Shirley, J.; Cantor, B.A.; Heavens, N.G. Observations of the Mars Year 35 E (Early) Large-Scale Regional Dust Event. 2022. Available online: https://www-mars.lmd.jussieu.fr/paris2022/abstracts/oral_Kass_David.pdf (accessed on 20 March 2025).
- Hou, Z.; Liu, J.; Pang, F.; Wang, Y.; Li, Y.; Xu, M.; Gong, J.; Jiang, K.; Kang, Z.; Lin, Y.; et al. In Search of Signs of Life on Mars with China’s Sample Return Mission Tianwen-3. Nat. Astron. 2025, 9, 783–792. [Google Scholar] [CrossRef]
- Sun, C.; Yang, C.; Li, T.; Lai, D.; Fang, X. The Atmospheric Response to an Unusual Early-Year Martian Dust Storm. JGR Planets 2025, 130, e2024JE008694. [Google Scholar] [CrossRef]
- Li, B.; Qu, S.; Ling, Z.; Chen, S. A Preliminary Study on the Identification and Spatio-Temporal Characteristics of Martian Atmospheric Eddies. JGR Planets 2024, 129, e2023JE007937. [Google Scholar] [CrossRef]
- Wen, P.; Tian, Y.; Li, B.; Qu, S. Establishment of Safety Evaluation Factors for Dust Storms in the Landing Area Selection for Tianwen-3 Mission. Earth Space Sci. 2025, 12, e2024EA003994. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Yu, T.; Xia, C. Temporal and Spatial Prediction of Column Dust Optical Depth Trend on Mars Based on Deep Learning. Remote Sens. 2025, 17, 1472. [Google Scholar] [CrossRef]
- McCleese, D.J.; Schofield, J.T.; Taylor, F.W.; Calcutt, S.B.; Foote, M.C.; Kass, D.M.; Leovy, C.B.; Paige, D.A.; Read, P.L.; Zurek, R.W. Mars Climate Sounder: An Investigation of Thermal and Water Vapor Structure, Dust and Condensate Distributions in the Atmosphere, and Energy Balance of the Polar Regions. J. Geophys. Res. Planets 2007, 112, 2006JE002790. [Google Scholar] [CrossRef]
- Martín-Rubio, C.; Vicente-Retortillo, A.; Gómez, F.; Rodríguez-Manfredi, J.A. Interannual Variability of Regional Dust Storms Between Mars Years 24 and 36. Icarus 2024, 412, 115982. [Google Scholar] [CrossRef]
- Kass, D.M.; Schofield, J.T.; Kleinböhl, A.; McCleese, D.J.; Heavens, N.G.; Shirley, J.H.; Steele, L.J. Mars Climate Sounder Observation of Mars’ 2018 Global Dust Storm. Geophys. Res. Lett. 2020, 47, e2019GL083931. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Dou, X. What Causes Seasonal Variation of Migrating Diurnal Tide Observed by the Mars Climate Sounder? JGR Planets 2017, 122, 1227–1242. [Google Scholar] [CrossRef]
- Heavens, N.G.; Richardson, M.I.; Kleinböhl, A.; Kass, D.M.; McCleese, D.J.; Abdou, W.; Benson, J.L.; Schofield, J.T.; Shirley, J.H.; Wolkenberg, P.M. The Vertical Distribution of Dust in the Martian Atmosphere During Northern Spring and Summer: Observations by the Mars Climate Sounder and Analysis of Zonal Average Vertical Dust Profiles. J. Geophys. Res. 2011, 116, E04003. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J. Improved General Circulation Models of the Martian Atmosphere from the Surface to Above 80 km. J. Geophys. Res. Planets 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Lewis, S.R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M.T.; Smith, M.D.; et al. Eight-Year Climatology of Dust Optical Depth on Mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef]
- Madeleine, J.-B.; Forget, F.; Millour, E.; Montabone, L.; Wolff, M.J. Revisiting the Radiative Impact of Dust on Mars Using the LMD Global Climate Model. J. Geophys. Res. 2011, 116, E11010. [Google Scholar] [CrossRef]
- El-Said, A. Quantifying the Atmospheric Impact of Local Dust Storms Using a Martian Global Circulation Model. Icarus 2020, 336, 113470. [Google Scholar] [CrossRef]
- Wang, C.; Forget, F.; Bertrand, T.; Spiga, A.; Millour, E.; Navarro, T. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation. JGR Planets 2018, 123, 982–1000. [Google Scholar] [CrossRef]
- Millour, E.; Forget, F.; Spiga, A.; Pierron, T.; Bierjon, A.; Montabone, L.; Vals, M.; Lefèvre, F.; Chaufray, J.-Y.; Lopez-Valverde, M.; et al. The Mars Climate Database. In Proceedings of the Europlanet Science Congress 2022, Granada, Spain, 18–23 September 2022; p. EPSC2022-786. [Google Scholar] [CrossRef]
- Almatroushi, H.; AlMazmi, H.; AlMheiri, N.; AlShamsi, M.; AlTunaiji, E.; Badri, K.; Lillis, R.J.; Lootah, F.; Yousuf, M.; Amiri, S.; et al. Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Sci. Rev. 2021, 217, 89. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Cui, J.; Yang, C.; Rong, Z.; He, F.; Li, J.; Cheng, X.; Wei, Y. Global Seasonal Variations of Martian Atmospheric Pressure and Density from Mars Climate Sounder. JGR Space Phys. 2025, 130, e2025JA034148. [Google Scholar] [CrossRef]
- Wolkenberg, P.; Giuranna, M.; Smith, M.D.; Grassi, D.; Amoroso, M. Similarities and Differences of Global Dust Storms in MY 25, 28, and 34. JGR Planets 2020, 125, e2019JE006104. [Google Scholar] [CrossRef]
- McCleese, D.J.; Heavens, N.G.; Schofield, J.T.; Abdou, W.A.; Bandfield, J.L.; Calcutt, S.B.; Irwin, P.G.J.; Kass, D.M.; Kleinböhl, A.; Lewis, S.R.; et al. Structure and Dynamics of the Martian Lower and Middle Atmosphere as Observed by the Mars Climate Sounder: Seasonal Variations in Zonal Mean Temperature, Dust, and Water Ice Aerosols. J. Geophys. Res. Planets 2010, 115, 2010JE003677. [Google Scholar] [CrossRef]
- Cantor, B.A. MOC Observations of the 2001 Mars Planet-Encircling Dust Storm. Icarus 2007, 186, 60–96. [Google Scholar] [CrossRef]
- Ciazela, M.; Ciazela, J.; Pieterek, B. High Resolution Apparent Thermal Inertia Mapping on Mars. Remote Sens. 2021, 13, 3692. [Google Scholar] [CrossRef]
- Kleinböhl, A.; Schofield, J.T.; Kass, D.M.; Abdou, W.A.; Backus, C.R.; Sen, B.; Shirley, J.H.; Lawson, W.G.; Richardson, M.I.; Taylor, F.W.; et al. Mars Climate Sounder Limb Profile Retrieval of Atmospheric Temperature, Pressure, and Dust and Water Ice Opacity. J. Geophys. Res. Planets 2009, 114, 2009JE003358. [Google Scholar] [CrossRef]
- Piqueux, S.; Kleinböhl, A.; Hayne, P.O.; Kass, D.M.; Schofield, J.T.; McCleese, D.J. Variability of the Martian Seasonal CO2 Cap Extent over Eight Mars Years. Icarus 2015, 251, 164–180. [Google Scholar] [CrossRef]
- Barnes, J.R.; Haberle, R.M.; Wilson, R.J.; Lewis, S.R.; Murphy, J.R.; Read, P.L. The Global Circulation. In The Atmosphere and Climate of Mars; Haberle, R.M., Clancy, R.T., Forget, F., Smith, M.D., Zurek, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 229–294. ISBN 978-1-139-06017-2. [Google Scholar]
- Richardson, M.I.; Wilson, R.J. A Topographically Forced Asymmetry in the Martian Circulation and Climate. Nature 2002, 416, 298–301. [Google Scholar] [CrossRef]
- Zurek, R.W. Understanding Mars and Its Atmosphere. In The Atmosphere and Climate of Mars; Haberle, R.M., Clancy, R.T., Forget, F., Smith, M.D., Zurek, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 3–19. ISBN 978-1-139-06017-2. [Google Scholar]
- Cantor, B.A.; James, P.B.; Caplinger, M.; Wolff, M.J. Martian Dust Storms: 1999 Mars Orbiter Camera Observations. J. Geophys. Res. Planets 2001, 106, 23653–23687. [Google Scholar] [CrossRef]
- Golombek, M.; Kipp, D.; Warner, N.; Daubar, I.J.; Fergason, R.; Kirk, R.L.; Beyer, R.; Huertas, A.; Piqueux, S.; Putzig, N.E.; et al. Selection of the InSight Landing Site. Space Sci. Rev. 2017, 211, 5–95. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, P.L.; Forget, F. Modeling the Martian Dust Cycle, 1. Representations of Dust Transport Processes. J. Geophys. Res. Planets 2002, 107, 5123. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Li, T.; Cui, J. Gravity Waves in Different Atmospheric Layers During Martian Dust Storms. JGR Planets 2022, 127, e2021JE007170. [Google Scholar] [CrossRef]
- Bertrand, T.; Wilson, R.J.; Kahre, M.A.; Urata, R.; Kling, A. Simulation of the 2018 Global Dust Storm on Mars Using the NASA Ames Mars GCM: A Multitracer Approach. JGR Planets 2020, 125, e2019JE006122. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Li, T.; Cui, J. The Dust Storm and Its Interaction with Atmospheric Waves on Mars. Rev. Geophys. Planet. Phys. 2021, 52, 402–415. [Google Scholar] [CrossRef]
- Yang, C.; Sun, C.; Wu, Z.; Li, T. Observed Dawn and Twilight Pressure Sudden Peaks in the Global Martian Surface and Possible Relationships with Atmospheric Tides. JGR Planets 2023, 128, e2022JE007650. [Google Scholar] [CrossRef]
- Martínez, G.M.; Newman, C.N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N.O.; Richardson, M.I.; Fairén, A.G.; Genzer, M.; Guzewich, S.D.; Haberle, R.M.; et al. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Sci. Rev. 2017, 212, 295–338. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Li, J.; Zhang, X.; Yang, C.; Cui, J. Abnormal Phase Structure of Thermal Tides During Major Dust Storms on Mars: Implications for the Excitation Source of High-altitude Water Ice Clouds. JGR Planets 2021, 126, e2020JE006758. [Google Scholar] [CrossRef]
- Wu, Z.; Richardson, M.I.; Zhang, X.; Cui, J.; Heavens, N.G.; Lee, C.; Li, T.; Lian, Y.; Newman, C.E.; Soto, A.; et al. Large Eddy Simulations of the Dusty Martian Convective Boundary Layer with MarsWRF. J. Geophys. Res. 2020, 126, e2020JE006752. [Google Scholar] [CrossRef]
- Hinson, D.P.; Wang, H.; Smith, M.D. A Multi-Year Survey of Dynamics Near the Surface in the Northern Hemisphere of Mars: Short-Period Baroclinic Waves and Dust Storms. Icarus 2012, 219, 307–320. [Google Scholar] [CrossRef]
- Chassefière, E.; Drossart, P.; Korablev, O. Post-Phobos Model for the Altitude and Size Distribution of Dust in the Low Martian Atmosphere. J. Geophys. Res. Planets 1995, 100, 5525–5539. [Google Scholar] [CrossRef]
- Luginin, M.; Fedorova, A.; Ignatiev, N.; Trokhimovskiy, A.; Shakun, A.; Grigoriev, A.; Patrakeev, A.; Montmessin, F.; Korablev, O. Properties of Water Ice and Dust Particles in the Atmosphere of Mars During the 2018 Global Dust Storm as Inferred from the Atmospheric Chemistry Suite. JGR Planets 2020, 125, e2020JE006419. [Google Scholar] [CrossRef]
- Fedorova, A.A.; Korablev, O.I.; Montmessin, F.; Bertaux, J.-L.; Betsis, D.S.; Lefèvre, F. Distribution of Atmospheric Aerosols During the 2007 Mars Dust Storm (MY 28): Solar Infrared Occultation Observations by SPICAM. Icarus 2024, 415, 116030. [Google Scholar] [CrossRef]






















| Origin | Zonal Propagation Direction | Meridional Propagation Direction | Latitudinal Range | Onset Phase | Expansion Phase | Decay Phase | |
|---|---|---|---|---|---|---|---|
| MY 35 E storm | 0–50°N, 50–100°W | Eastward in mid-latitudes; westward in low-latitudes in NH | Mainly southward | 60°N–30°S | 33°–35° | 36°–40° | 41°–50° |
| MY 35 C storm | 0–50°S, 60–100°W | Eastward in mid-latitudes; westward in low-latitudes in SH | Mainly northward | 50°N–60°S | 313°–316° | 317°–321° | 322°–333° |
| MY 36 Z storm | 0–30°S, 90–135°E | Mainly eastward | symmetrically northward and southward | 30°N–30°S | 150°–156° | 157°–164° | 165°–180° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Wu, Z.; Rong, Z.; He, F.; Cheng, X.; Wang, Y.; Gao, J.; Wei, Y. The Evolution of the Mars Year (MY) 35 Anomalous Spring Dust Storm and Its Influence on the Chryse and Utopia Plains. Remote Sens. 2025, 17, 3542. https://doi.org/10.3390/rs17213542
He H, Wu Z, Rong Z, He F, Cheng X, Wang Y, Gao J, Wei Y. The Evolution of the Mars Year (MY) 35 Anomalous Spring Dust Storm and Its Influence on the Chryse and Utopia Plains. Remote Sensing. 2025; 17(21):3542. https://doi.org/10.3390/rs17213542
Chicago/Turabian StyleHe, Huining, Zhaopeng Wu, Zhaojin Rong, Fei He, Xuan Cheng, Yuqi Wang, Jiawei Gao, and Yong Wei. 2025. "The Evolution of the Mars Year (MY) 35 Anomalous Spring Dust Storm and Its Influence on the Chryse and Utopia Plains" Remote Sensing 17, no. 21: 3542. https://doi.org/10.3390/rs17213542
APA StyleHe, H., Wu, Z., Rong, Z., He, F., Cheng, X., Wang, Y., Gao, J., & Wei, Y. (2025). The Evolution of the Mars Year (MY) 35 Anomalous Spring Dust Storm and Its Influence on the Chryse and Utopia Plains. Remote Sensing, 17(21), 3542. https://doi.org/10.3390/rs17213542

