More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis
Highlights
- Significant differences exist in the phenological periods derived from different curve-fitting methods, with the CS method being the most suitable for extracting SOS, while the SG method is the most suitable for extracting EOS and POS.
- In the selection of thresholds and SIF datasets, the optimal combination for extracting SOS is the 20% threshold and GOSIF, for extracting EOS, it is the 30% threshold and GOSIF, and the optimal dataset for extracting POS is CSIF.
- Appropriate thresholds, datasets, and curve-fitting methods are crucial for phenological extraction.
- We provide a reference for phenology extraction in regions with frequent cloud cover and widespread evergreen vegetation.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GOSIF Data
2.2.2. RTSIF Data
2.2.3. CSIF Data
2.2.4. Land Cover Data
2.2.5. Flux GPP Data
2.3. Method
2.3.1. Phenological Indicator Extraction
- (1)
- MA
- (2)
- SG
- (3)
- CS
- (4)
- PN
- (5)
- AG
- (6)
- DL
2.3.2. Accuracy Evaluation
2.3.3. Uncertainty Analysis
2.3.4. Trend Analysis
3. Results
3.1. Effect Evaluation of Different Thresholds and SIF Data Extracts
3.2. Uncertainty Analysis of Phenology Obtained by Different Curve-Fitting Methods
3.3. Spatial Distribution Pattern and Change Trend of Vegetation Phenology
4. Discussion
4.1. Evaluation of Phenological Effects Derived from Different SIF Data and Curve Fitting Methods
4.2. Analysis of Spatial and Temporal Variation in Vegetation Phenology
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, J.; Wu, Z.; Chen, S. Vegetation Phenology Response to Climate Change in China. J. Beijing Norm. Univ. (Nat. Sci.). 2022, 58, 424–433. [Google Scholar]
- Zhao, C.; Zhu, W. Vegetation Structure and Phenology Primarily Shape the Spatiotemporal Pattern of Ecosystem Respiration. Commun. Earth Environ. 2025, 6, 249. [Google Scholar] [CrossRef]
- Gu, H.; Qiao, Y.; Xi, Z.; Rossi, S.; Smith, N.G.; Liu, J.; Chen, L. Warming-Induced Increase in Carbon Uptake Is Linked to Earlier Spring Phenology in Temperate and Boreal Forests. Nat. Commun. 2022, 13, 4164. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Sun, Y.; Wu, C.; Ding, Z.; Tang, X. Long-Term Dynamics of Peak Photosynthesis Timing and Environmental Controls in the Tibetan Plateau Monitored by Satellite Solar-Induced Chlorophyll Fluorescence. Int. J. Digital Earth 2024, 17, 2300311. [Google Scholar] [CrossRef]
- Peng, D.; Wu, C.; Li, C.; Zhang, X.; Liu, Z.; Ye, H.; Luo, S.; Liu, X.; Hug, Y.; Fang, B. Spring Green-up Phenology Products Derived from MODIS NDVI and EVI: Intercomparison, Interpretation and Validation Using National Phenology Network and Ameriflux Observations. Ecol. Indic. 2017, 77, 323–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Parazoo, N.C.; Williams, A.P.; Zhou, S.; Gentine, P. Large and Projected Strengthening Moisture Limitation on End-of-Season Photosynthesis. Proc. Natl. Acad. Sci. USA 2020, 117, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-Comparison of Four Models for Smoothing Satellite Sensor Time-Series Data to Estimate Vegetation Phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Zhu, G.; Arain, M.A.; Black, T.A.; Jassal, R.S. No Trends in Spring and Autumn Phenology During the Global Warming Hiatus. Nat. Commun. 2019, 10, 2389. [Google Scholar] [CrossRef]
- Ge, Z.; Huang, J.; Wang, X.; Zhao, Y.; Tang, X.; Zhou, Y.; Lai, P.; Hao, B.; Ma, M. Using Remote Sensing to Identify the Peak of the Growing Season at Globally-Distributed Flux Sites: A Comparison of Models, Sensors, and Biomes. Agric. For. Meteorol. 2021, 307, 108489. [Google Scholar] [CrossRef]
- Chen, J.M.; Feng, D.; Mingzhen, C. Locally Adjusted Cubic-Spline Capping for Reconstructing Seasonal Trajectories of a Satellite-Derived Surface Parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Ge, Z.; Huang, J.; Wang, X.; Tang, X.; Fan, L.; Zhao, Y.; Ma, M. Contrasting Trends between Peak Photosynthesis Timing and Peak Greenness Timing across Seven Typical Biomes in Northern Hemisphere Mid-Latitudes. Agric. For. Meteorol. 2022, 323, 109054. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Huang, Z.; Fan, W.; Chen, Q.; Ni, C.; Guo, K. Improving Extraction Phenology Accuracy Using Sif Coupled with the Vegetation Index and Mapping the Spatiotemporal Pattern of Bamboo Forest Phenology. Remote Sens. Environ. 2023, 297, 113785. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.; Du, H.; Mao, F.; Xu, Y.; Huang, Z.; Zhao, Y.; Lv, L.; Song, M.; Huang, L.; et al. Solar-Induced Fluorescence-Based Phenology of Subtropical Forests in China and Its Response to Climate Factors. Agric. For. Meteorol. 2024, 356, 110182. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Yousefpour, R.; Hanewinkel, M. Abiotic Disturbances Affect Forest Short-Term Vegetation Cover and Phenology in Southwest China. Ecol. Indic. 2021, 124, 107393. [Google Scholar] [CrossRef]
- Meng, F.; Huang, L.; Chen, A.; Zhang, Y.; Piao, S. Spring and Autumn Phenology across the Tibetan Plateau Inferred from Normalized Difference Vegetation Index and Solar-Induced Chlorophyll Fluorescence. Big Earth Data 2021, 5, 182–200. [Google Scholar] [CrossRef]
- Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Bonal, D. Joint Control of Terrestrial Gross Primary Productivity by Plant Phenology and Physiology. Proc. Natl. Acad. Sci. USA 2015, 112, 2788–2793. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; De Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A. Evaluation of the Potential of MODIS Satellite Data to Predict Vegetation Phenology in Different Biomes: An Investigation Using Ground-Based NDVI Measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, H.; Shi, Z.; Peng, F.; Lin, Y. Solar-Induced Chlorophyll Fluorescence Data-Based Study on the Spatial and Temporal Patterns of Vegetation Phenology in the Northern Hemisphere During the Period of 2007–2018. Nat. Remote Sens. Bull. 2023, 27, 376–393. [Google Scholar]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.; Middleton, E.M.; Huemmrich, K.F.; et al. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and Its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, J.; Tang, B.; Lai, P.; Huang, L.; Li, M.; Zhang, Z.; Fan, D.; Zhou, Y. Ecosystem Drought Recovery and Its Driving Factors in Southwest China. J. Hydrol. Reg. Stud. 2025, 62, 102780. [Google Scholar] [CrossRef]
- Chen, A.; Meng, F.; Mao, J.; Ricciuto, D. Photosynthesis Phenology, as Defined by Solar-Induced Chlorophyll Fluorescence, Is Overestimated by Vegetation Indices in the Extratropical Northern Hemisphere. Agric. For. Meteorol. 2022, 323, 109027. [Google Scholar] [CrossRef]
- Bodesheim, P.; Jung, M.; Gans, F.; Mahecha, M.D.; Reichstein, M. Upscaled Diurnal Cycles of Land–Atmosphere Fluxes: A New Global Half-Hourly Data Product. Earth Syst. Sci. Data 2018, 10, 1327–1365. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y. Error Estimation and Data Fusion of Root Zone Soil Moisture Products over China Based on the Three Corned Hat Method. Glob. Planet. Change 2025, 251, 104797. [Google Scholar] [CrossRef]
- Xie, Z.; Yao, Y.; Tang, Q.; Liu, M.; Fisher, J.B.; Chen, J.; Zhang, X.; Jia, K.; Li, Y.; Shang, K.; et al. Evaluation of Seven Satellite-Based and Two Reanalysis Global Terrestrial Evapotranspiration Products. J. Hydrol. 2024, 630, 130649. [Google Scholar] [CrossRef]
- Zhang, L.; Guli∙, J.; Yu, T.; Liang, H.; Lin, K.; Ju, T.; De Maeyer, P.; Van de Voorde, T. Evaluating the Performance of Snow Depth Reanalysis Products in the Arid Region of Central Asia. Int. J. Digital Earth 2025, 18, 2447368. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Wang, K.; Zhang, Y.; Guo, Y.; Shen, Y.-J. Multidimensional Evaluation of Satellite-Based and Reanalysis-Based Precipitation Datasets in the Tibetan Plateau. J. Hydrol. 2025, 660, 133364. [Google Scholar] [CrossRef]
- Duan, S.-B.; Zhou, S.; Li, Z.-L.; Liu, X.; Chang, S.; Liu, M.; Huang, C.; Zhang, X.; Shang, G. Improving Monthly Mean Land Surface Temperature Estimation by Merging Four Products Using the Generalized Three-Cornered Hat Method and Maximum Likelihood Estimation. Remote Sens. Environ. 2024, 302, 113989. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Y.; et al. Uncertainty Analysis of Eleven Multisource Soil Moisture Products in the Third Pole Environment Based on the Three-Corned Hat Method. Remote Sens. Environ. 2021, 255, 112225. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, Y.; Wang, A.; Wu, J.; Li, C. Uncertainty Analysis and Data Fusion of Multi-Source Land Evapotranspiration Products Based on the Tch Method. Remote Sens. 2024, 16, 28. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Hamdi, R.; Ma, X.; Li, Y.; Yuan, X.; Li, C.; Ling, Q.; Hellwich, O.; Termonia, P.; et al. Can Gross Primary Productivity Products Be Effectively Evaluated in Regions with Few Observation Data? GIScience Remote Sens. 2023, 60, 2213489. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, Y.; Xin, Y.; Zhong, D.; Yang, C. Changes of Vegetation Phenology and Its Response to Climate Change in the West Sichuan Plateau in the Past 20 Years. Ecol. Environ. Sci. 2022, 31, 1326. [Google Scholar]
- Lai, P.; Zhang, M.; Ge, Z.; Hao, B.; Song, Z.; Huang, J.; Ma, M.; Yang, H.; Han, X. Responses of Seasonal Indicators to Extreme Droughts in Southwest China. Remote Sens. 2020, 12, 818. [Google Scholar] [CrossRef]
- Kovács, D.D.; Reyes-Muñoz, P.; Salinero-Delgado, M.; Mészáros, V.I.; Berger, K.; Verrelst, J. Cloud-Free Global Maps of Essential Vegetation Traits Processed from the Toa Sentinel-3 Catalogue in Google Earth Engine. Remote Sens. 2023, 15, 3404. [Google Scholar] [CrossRef]
- Koehler, P.; Guanter, L.; Kobayashi, H.; Walther, S.; Yang, W. Assessing the Potential of Sun-Induced Fluorescence and the Canopy Scattering Coefficient to Track Large-Scale Vegetation Dynamics in Amazon Forests. Remote Sens. Environ. 2018, 204, 769–785. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Nie, C.; Zhang, S.; Wang, G.; Chen, S.; Chen, Z. A Long-Term Reconstructed TROPOMI Solar-Induced Fluorescence Dataset Using Machine Learning Algorithms. Sci. Data 2022, 9, 427. [Google Scholar] [CrossRef]
- Zhang, Y.; Joiner, J.; Alemohammad, S.H.; Zhou, S.; Gentine, P. A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X. Plant Phenology Changes and Drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, X.; Zhao, C.; Tan, Q.; Li, Y.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Spring Photosynthetic Phenology of Chinese Vegetation in Response to Climate Change and Its Impact on Net Primary Productivity. Agric. For. Meteorol. 2023, 342, 109734. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shen, M.G.; Jiang, N.; Lv, J.X.; Liu, L.C.; Zhang, L. Spatial Variations in the Response of Spring Onset of Photosynthesis of Evergreen Vegetation to Climate Factors across the Tibetan Plateau: The Roles of Interactions between Temperature, Precipitation, and Solar Radiation. Agric. For. Meteorol. 2023, 335, 109440. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Balzarolo, M.; Vicca, S.; Nguy-Robertson, A.L.; Bonal, D.; Elbers, J.A.; Fu, Y.H.; Grünwald, T.; Horemans, J.A.; Papale, D.; Peñuelas, J.; et al. Matching the Phenology of Net Ecosystem Exchange and Vegetation Indices Estimated with MODIS and Fluxnet in-Situ Observations. Remote Sens. Environ. 2016, 174, 290–300. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Xiao, J.; Zhu, G.; Tan, J.; Zhang, Y.; Ge, Y.; Che, T. Snow Cover Duration Delays Spring Green-up in the Northern Hemisphere the Most for Grasslands. Agric. For. Meteorol. 2024, 355, 110130. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Yang, X.; Chen, W.; Zhang, J.; Liu, Y.; Liu, S.; Meng, D.; Zeng, X. Remotely-Sensed Phenology Pattern Regionalization for Land Cover Classification of Natural Scenes: A Case Study in China. Acta Geogr. Sin. 2024, 79, 2206–2229. [Google Scholar]
- Ma, C.; Wang, X.; Wu, C. Early Leaf Senescence under Drought Conditions in the Northern Hemisphere. Agric. For. Meteorol. 2024, 358, 110231. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Tong, W.; Zhou, W.; Li, J.; Xu, B.; Hu, Q. Mapping Crop Phenophases in Reproductive Growth Period by Satellite Solar-Induced Chlorophyll Fluorescence: A Case Study in Mid-Temperate Zone in China. ISPRS J. Photogramm. Remote Sens. 2023, 205, 191–205. [Google Scholar] [CrossRef]
- Zhou, X.; Geng, X.; Yin, G.; Hänninen, H.; Hao, F.; Zhang, X.H.; Fu, Y. Legacy Effect of Spring Phenology on Vegetation Growth in Temperate China. Agric. For. Meteorol. 2020, 281, 107845. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sen. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Gu, L.; Post, W.M.; Baldocchi, D.D.; Black, T.A.; Suyker, A.E.; Verma, S.B.; Vesala, T.; Wofsy, S.C. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis across a Range of Vegetation Types. In Phenology of Ecosystem Processes: Applications in Global Change Research, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bai, W.; Wang, H.; Dai, J.; Ge, Q. Changes in Peak Greenness Timing and Senescence Duration Codetermine the Responses of Leaf Senescence Date to Drought over Mongolian Grassland. Agric. For. Meteorol. 2024, 345, 109869. [Google Scholar] [CrossRef]
- Tavella, P.; Premoli, A. Estimating the Instabilities of N Clocks by Measuring Differences of Their Readings. Metrologia 1994, 30, 479. [Google Scholar] [CrossRef]
- Awange, J.; Ferreira, V.G.; Forootan, E.; Khandu, K.; Andam-Akorful, S.; Agutu, N. Uncertainties in Remotely-Sensed Precipitation Data over Africa. Int. J. Climatol. 2016, 36, 303–323. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend Detection in Hydrologic Data: The Mann-Kendall Trend Test under the Scaling Hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of Vegetation Phenology Detection to the Temporal Resolution of Satellite Data. Int. J. Remote Sens. 2009, 30, 2061–2074. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A Comparison of Methods for Smoothing and Gap Filling Time Series of Remote Sensing Observations-Application to MODIS LAI Products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef]
- White, K.; Pontius, J.; Schaberg, P. Remote Sensing of Spring Phenology in Northeastern Forests: A Comparison of Methods, Field Metrics and Sources of Uncertainty. Remote Sens. Environ. 2014, 148, 97–107. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982–2006. Glob. Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef]
- Wu, W.; Peng, Y.; Hua-Jun, T.; Qing-Bo, Z.; Shibasaki, R.; Li, Z.; Peng-Qin, T. Spatio-Temporal Variations in the Starting Dates of Growing Season in China’s Cropland over the Past 20 Years. Acta Ecol. Sin. 2009, 29, 1777–1786. [Google Scholar]
- Fang, J.; Li, X.; Xiao, J.; Yan, X.; Li, B.; Liu, F. Vegetation Photosynthetic Phenology Dataset in Northern Terrestrial Ecosystems. Sci. Data 2023, 10, 300. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of Land Surface Phenology from VIIRS Data Using Time Series of Phenocam Imagery. Agric. For. Meteorol. 2018, 256, 137–149. [Google Scholar] [CrossRef]
- Wang, M.; Luo, Y.; Zhang, Z.; Xie, Q.; Wu, X.; Ma, X. Recent Advances in Remote Sensing of Vegetation Phenology: Retrieval Algorithm and Validation Strategy. Nat. Remote Sens. Bull. 2022, 26, 431–455. [Google Scholar]
- Zhou, Y. Depicting the Asymmetries of Vegetation Phenology over Northeast China Using Remote Sensing NDVI Dataset. Remote Sens. Technol. Appl. 2019, 34, 345–354. [Google Scholar]
- Zhou, Y. Comparative Study of Vegetation Phenology Extraction Methods Based on Digital Images. Prog. Geogr. 2018, 37, 1031–1044. [Google Scholar]
- Liu, Y.; Wu, C.; Peng, D.; Xu, S.; Gonsamo, A.; Jassal, R.S.; Altaf Arain, M.; Lu, L.; Fang, B.; Chen, J.M. Improved Modeling of Land Surface Phenology Using MODIS Land Surface Reflectance and Temperature at Evergreen Needleleaf Forests of Central North America. Remote Sens. Environ. 2016, 176, 152–162. [Google Scholar] [CrossRef]
- Guan, K.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence. Glob. Change Biol. 2016, 22, 716–726. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I. Solar-Induced Chlorophyll Fluorescence Is Strongly Correlated with Terrestrial Photosynthesis for a Wide Variety of Biomes: First Global Analysis Based on OCO-2 and Flux Tower Observations. Glob. Change Biol. 2018, 24, 3990–4008. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.Y.; Han, J.Q.; Zhang, D.J.; Wang, F. Divergent Impacts of Droughts on Vegetation Phenology and Productivity in the Yungui Plateau, Southwest China. Ecol. Indic. 2021, 127, 107743. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C. Estimating the Peak of Growing Season (POS) of China’s Terrestrial Ecosystems. Agric. For. Meteorol. 2019, 278, 107639. [Google Scholar] [CrossRef]
- Mei, L.; Bao, G.; Tong, S.; Yin, S.; Bao, Y.; Jiang, K.; Hong, Y.; Tuya, A.; Huang, X. Elevation-Dependent Response of Spring Phenology to Climate and Its Legacy Effect on Vegetation Growth in the Mountains of Northwest Mongolia. Ecol. Indic. 2021, 126, 107640. [Google Scholar] [CrossRef]
- Xu, C.; Liu, H.; Williams, A.P.; Yin, Y.; Wu, X. Trends toward an Earlier Peak of the Growing Season in Northern Hemisphere Mid-Latitudes. Glob. Change Biol. 2016, 22, 2852–2860. [Google Scholar] [CrossRef]
- Yan, W.; Yang, F.; Zhou, J.; Wu, R. Droughts Force Temporal Change and Spatial Migration of Vegetation Phenology in the Northern Hemisphere. Agric. For. Meteorol. 2023, 341, 109685. [Google Scholar] [CrossRef]
- Peng, J.; Wu, C.; Zhang, X.; Wang, X.; Gonsamo, A. Satellite Detection of Cumulative and Lagged Effects of Drought on Autumn Leaf Senescence over the Northern Hemisphere. Glob. Change Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, X.; Silander, J.A. Deciduous Forest Responses to Temperature, Precipitation, and Drought Imply Complex Climate Change Impacts. Proc. Natl. Acad. Sci. USA 2015, 112, 13585–13590. [Google Scholar] [CrossRef]
- Jiao, F.; Liu, H.; Xu, X.; Gong, H.; Lin, Z. Trend Evolution of Vegetation Phenology in China During the Period of 1981–2016. Remote Sens. 2020, 12, 572. [Google Scholar] [CrossRef]
- Shen, M.; Zhao, W.; Jiang, N.; Liu, L.; Cao, R.; Yang, W.; Zhu, X.; Wang, C.; Chen, X.; Chen, J. Challenges in Remote Sensing of Vegetation Phenology. Innov. Geosci. 2024, 2, 100070. [Google Scholar] [CrossRef]
- Peng, D.; Wu, C.; Zhang, X.; Yu, L.; Huete, A.R.; Wang, F.; Luo, S.; Liu, X.; Zhang, H. Scaling up Spring Phenology Derived from Remote Sensing Images. Agric. For. Meteorol. 2018, 256, 207–219. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, Q.; Bai, F.; Cao, X.; Wei, Z.; Lu, X.; Wei, N.; Yuan, H.; Zhang, S.; Liu, S. Reconciling Global Terrestrial Evapotranspiration Estimates from Multi-Product Intercomparison and Evaluation. Water Resour. Res. 2024, 60, e2024WR037608. [Google Scholar] [CrossRef]














| No. | Station | Lat. (°N) | Lon. (°E) | Vegetation Types | Time Duration |
|---|---|---|---|---|---|
| 1 | ALS | 24.53 | 101.02 | Forest | 2009–2013 |
| 2 | YJ | 23.47 | 102.17 | Forest | 2014–2015 |
| 3 | JFS | 29.02 | 107.15 | Forest | 2020 |
| 4 | PD | 26.36 | 105.75 | Forest | 2016–2019 |
| 5 | REG | 33.10 | 102.65 | Grassland | 2016–2018, 2020 |
| 6 | XSBN | 21.95 | 101.20 | Forest | 2003–2015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Ge, Z.; Wang, X. More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis. Remote Sens. 2025, 17, 3538. https://doi.org/10.3390/rs17213538
Tang F, Ge Z, Wang X. More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis. Remote Sensing. 2025; 17(21):3538. https://doi.org/10.3390/rs17213538
Chicago/Turabian StyleTang, Feng, Zhongxi Ge, and Xufeng Wang. 2025. "More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis" Remote Sensing 17, no. 21: 3538. https://doi.org/10.3390/rs17213538
APA StyleTang, F., Ge, Z., & Wang, X. (2025). More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis. Remote Sensing, 17(21), 3538. https://doi.org/10.3390/rs17213538

