Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index
Abstract
Highlights
- The novel Normalized Shaded Vegetation Index (NSVI) effectively resolves spectral confusion in sloped terrain and enhances the accuracy of surface emissivity calculations.
- Combining NSVI with radiation-transfer-based Land Surface Temperature (LST) inversion techniques yields high-precision LST estimates.
- This framework provides a replicable, efficient solution for geothermal exploration in complex topography regions like the Gonghe Basin, with potential for broader application across the Tibetan Plateau.
- By precisely identifying high-potential geothermal zones in the Gonghe Basin, it optimizes exploration efforts, supports targeted resource development, and reduces exploration uncertainty.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remote Sensing Data
2.2.2. Geothermal Geological Data
2.3. Construction of Normalized Shadow Vegetation Index
2.4. Land Surface Temperature Inversion
2.5. Prediction of Potential Geothermal Anomaly Zones
3. Results
3.1. Shaded Area Vegetation Identification Based on NSVI
3.2. Spatial Distribution Characteristics of Land Surface Temperature
3.3. Identification of Geothermal Anomaly Zones
4. Discussion
4.1. Image Analysis Based on NSVI Construction
4.2. Identification and Evaluation of Geothermal Anomaly Zones
4.3. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Overland, I.; Juraev, J.; Vakulchuk, R. Are renewable energy sources more evenly distributed than fossil fuels? Renew. Energy 2022, 200, 379–386. [Google Scholar] [CrossRef]
- Rohit, R.V.; Vipin Raj, R.; Dennis, C.K.; Veena, R.; Rajan, J.; Pradeepkumar, A.P.; Kumar, K.S. Tracing the evolution and charting the future of geothermal energy research and development. Renew. Sustain. Energy Rev. 2023, 184, 113531. [Google Scholar] [CrossRef]
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G.; Ciminelli, C. Solar Energy in Space Applications: Review and Technology Perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Roga, S.; Bardhan, S.; Kumar, Y.; Dubey, S.K. Recent technology and challenges of wind energy generation: A review. Sustain. Energy Technol. Assess. 2022, 52, 102239. [Google Scholar] [CrossRef]
- Khojasteh, D.; Khojasteh, D.; Kamali, R.; Beyene, A.; Iglesias, G. Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. Renew. Sustain. Energy Rev. 2018, 81, 2992–3005. [Google Scholar] [CrossRef]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Muller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef]
- Chao, J.; Zhao, Z.; Xu, S.; Lai, Z.; Liu, J.; Zhao, F.; Yang, H.; Chen, Q. Geothermal target detection integrating multi-source and multi-temporal thermal infrared data. Ore Geol. Rev. 2024, 167, 105991. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A.; et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2021, 2, 324–339. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J.-D. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Romaguera, M.; Vaughan, R.G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C.A.; van der Meer, F.D. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sens. Environ. 2018, 204, 534–552. [Google Scholar] [CrossRef]
- Wang, S.; Xu, W.; Guo, T. Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection. Remote Sens. 2024, 16, 1690. [Google Scholar] [CrossRef]
- Domra Kana, J.; Djongyang, N.; Danwe, R.; Njandjock Nouck, P.; Abdouramani, D. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev. 2015, 44, 87–95. [Google Scholar] [CrossRef]
- Mwangi, S.M. Application of Geochemical Methods in Geothermal Exploration in Kenya. Procedia Earth Planet. Sci. 2013, 7, 602–606. [Google Scholar] [CrossRef]
- Tende, A.W.; Aminu, M.D.; Gajere, J.N. A spatial analysis for geothermal energy exploration using bivariate predictive modelling. Sci. Rep. 2021, 11, 19755. [Google Scholar] [CrossRef]
- Gemitzi, A.; Dalampakis, P.; Falalakis, G. Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102283. [Google Scholar]
- Wang, K.; Jiang, Q.G.; Yu, D.H.; Yang, Q.L.; Wang, L.; Han, T.C.; Xu, X.Y. Detecting daytime and nighttime land surface temperature anomalies using thermal infrared remote sensing in Dandong geothermal prospect. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 196–205. [Google Scholar] [CrossRef]
- Zhou, T.; Fu, H.; Sun, C.; Wang, S. Shadow Detection and Compensation from Remote Sensing Images under Complex Urban Conditions. Remote Sens. 2021, 13, 699. [Google Scholar] [CrossRef]
- Dong, X.; Cao, J.; Zhao, W. A review of research on remote sensing images shadow detection and application to building extraction. Eur. J. Remote Sens. 2023, 57, 2293163. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Shen, H.; Zhang, L. A general variational framework considering cast shadows for the topographic correction of remote sensing imagery. ISPRS J. Photogramm. 2016, 117, 161–171. [Google Scholar] [CrossRef]
- Lu, S.; Xuan, J.; Zhang, T.; Bai, X.; Tian, F.; Ortega-Farias, S. Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements. Remote Sens. 2022, 14, 2259. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, Y.F.; Li, B.; Hao, Z.B.; Lin, L.; Hu, X.Y.; Zhou, X.; Yu, H.; Xiang, S.Y.; Pascal, M.L.F.; et al. A comparative study on the applicability and effectiveness of NSVI and NDVI for estimating fractional vegetation cover based on multi-source remote sensing image. Geocarto Int. 2023, 38, 2184501. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Q.; Li, D.Q.; Zhang, Q.X.; Zhang, X.; Liu, Z.J.; Wang, J.H. Characteristics of geothermal resource in Qiabuqia, Gonghe Basin: Evidence from high precision resistivity data. Ore Geol. Rev. 2022, 148, 105053. [Google Scholar] [CrossRef]
- Cao, W.G.; Yang, H.F.; Liu, C.L.; Li, Y.J.; Bai, H. Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China. Geosci. Front. 2018, 9, 907–916. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Zhang, S.; Zhang, Q.; Feng, G. Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China. Clean. Prod. 2021, 317, 128391. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Shen, Q.; Shang, K.; Xiao, C.; Tang, H.; Wu, T.; Wang, C. A novel hyperspectral remote sensing estimation model for surface soil texture using AHSI/ZY1-02D satellite image. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104453. [Google Scholar] [CrossRef]
- Lin, H.; Shu, G.; Xiping, Y.; Yan, L.; Guokun, C.; Sha, G.; Ahmed, K. Spatial Differentiation Analysis of Water Quality in Dianchi Lake Based on GF-5 NDVI Characteristic Optimization. J. Spectrosc. 2021, 11, 542126. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Zhang, F. The Influence of Spatial Heterogeneity of Urban Green Space on Surface Temperature. Forests 2024, 15, 878. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, N.; Nan, P.; Chai, L. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 552–559. [Google Scholar] [CrossRef]
- Darge, Y.M.; Hailu, B.T.; Muluneh, A.A.; Kidane, T. Detection of geothermal anomalies using Landsat 8 TIRS data in Tulu Moye geothermal prospect, Main Ethiopian Rift. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 16–26. [Google Scholar] [CrossRef]
- Duwiquet, H.; Arbaret, L.; Guillou-Frottier, L.; Heap, M.J.; Bellanger, M. On the geothermal potential of crustal fault zones: A case study from the Pontgibaud area (French Massif Central, France). Geotherm Energy 2019, 7, 33. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, S.; Qi, S.; Kuang, J.; Zhang, M.; Li, H. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. J. Earth Sci. 2023, 34, 194–204. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, G.; Shi, Y.; Wang, Z.; Wang, Y.; Li, S.; Jia, X.; Hu, S. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau. Geothermics 2018, 72, 182–192. [Google Scholar] [CrossRef]
- Su, J.; Yi, D.; Coombes, M.; Liu, C.; Zhai, X.; McDonald-Maier, K.; Chen, W.H. Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Comput. Electron. Agric. 2022, 192, 106621. [Google Scholar] [CrossRef]
- Zhao, T.; Bai, H.; Han, H.; Ta, Z.; Li, P.; Wang, P. A Quantitatively Divided Approach for the Vertical Belt of Vegetation Based on NDVI and DEM—An Analysis of Taibai Mountain. Forests 2023, 14, 1981. [Google Scholar] [CrossRef]
- Tao, C.; Seyfried, W.E., Jr.; Lowell, R.P.; Liu, Y.; Liang, J.; Guo, Z.; Ding, K.; Zhang, H.; Liu, J.; Qiu, L.; et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Hilemichaeil, S.; Haile, T.; Yirgu, G. Curie point depth, thermal gradient and heat flow along the Ethiopia Rift System and adjacent plateaus using spectral evaluation approach: Implications for geothermal resources. Geotherm Energy 2024, 12, 13. [Google Scholar] [CrossRef]
- Sun, J.; Liu, K.; He, Q.; Yu, T.; Deng, Y. Thermal infrared remote sensing and soil gas radon for detecting blind geothermal area. Geothermics 2022, 105, 102534. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, T.; Owen, D.D.R.; Jia, X.; Feng, B.; Zhang, Y. Geothermal fluid circulation in the Guide Basin of the northeastern Tibetan Plateau: Isotopic analysis and numerical modeling. Geothermics 2018, 71, 234–244. [Google Scholar] [CrossRef]
- Frick, S.; Kaltschmitt, M.; Schröder, G. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 2010, 35, 2281–2294. [Google Scholar] [CrossRef]
- Liu, S.; Ye, C.; Sun, Q.; Xu, M.; Duan, Z.; Sheng, H.; Wan, J. Detection of Geothermal Anomaly Areas With Spatio-Temporal Analysis Using Multitemporal Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4866–4878. [Google Scholar] [CrossRef]
- Zhao, F.; Peng, Z.; Qian, J.; Chu, C.; Zhao, Z.; Chao, J.; Xu, S. Detection of geothermal potential based on land surface temperature derived from remotely sensed and in-situ data. Geo-Spat. Inf. Sci. 2023, 27, 1237–1253. [Google Scholar] [CrossRef]
- Davitt, A.; Tesser, D.; Gamarro, H.; Anderson, M.; Knipper, K.; Xue, J.; Kustas, W.; Alsina, M.M.; Podest, E.; McDonald, K. The complementary uses of Sentinel-1A SAR and ECOSTRESS datasets to identify vineyard growth and conditions: A case study in Sonoma County, California. Irrig. Sci. 2022, 40, 655–681. [Google Scholar] [CrossRef]
- Lashkari, R.; Zare, S.; Tabatabaei-Nezhad, S.A.; Husein, M.M. Geothermal drilling using reprocessable shape memory polymer nanocomposite. Colloid Surf. A 2023, 673, 131809. [Google Scholar] [CrossRef]
- Martínez-Martos, M.; Galindo-Zaldívar, J.; Sanz de Galdeano, C.; García-Tortosa, F.J.; Martínez-Moreno, F.J.; Ruano, P.; González-Castillo, L.; Azañón, J.M. Latest extension of the Laujar fault in a convergence setting (Sierra Nevada, Betic Cordillera). J. Geodyn. 2017, 104, 15–26. [Google Scholar] [CrossRef]
- Zheng, G.; Zhao, T.; Liu, Y. Cloud Removal in the Tibetan Plateau Region Based on Self-Attention and Local-Attention Models. Sensors 2024, 24, 7848. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, J.; Lei, T.; Wu, H.; Zhang, X.; Ma, J.; Zhong, H. Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network. Remote Sens. 2020, 12, 2691. [Google Scholar]
Satellite/Sensor | Data Type | Bands Used | Spatial Resolution | Temporal Coverage | Data Source/Product | Purpose |
---|---|---|---|---|---|---|
GF-5B AHSI | Hyperspectral Imagery | VNIR-SWIR (330 bands) | 30 m | 2023 | https://data.cresda.cn, accessed on 1 July 2025 | NSVI calculation, Land cover classification |
ZY1–02D/E AHSI | Hyperspectral Imagery | VNIR-SWIR (166 bands) | 30 m | 2023 | https://data.cresda.cn, accessed on 1 July 2025 | NSVI calculation, Land cover classification |
Landsat 9 TIRS | Thermal Infrared | Band 10, 11 | 100 m (resampled to 30 m) | August 2024 | LC09-L1TP | LST inversion input |
Landsat 9 LST | Land Surface Temperature | - | 30 m | August 2024 | Collection 2 Level-2 | Cross-validation |
Geological Data | Fault lines, Rock masses | - | - | - | Qinghai Provincial Bureau | Geothermal targeting constraints |
Serial Number | Satellite Type | Imaging Date | Cloud Coverage (%) | Imaging Time |
---|---|---|---|---|
1 | GF5B AHSI | 2023–04–11 | 0 | daytime |
2 | GF5B AHSI | 2023–04–18 | 0.1 | daytime |
3 | GF5B AHSI | 2023–04–18 | 0 | daytime |
4 | GF5B AHSI | 2023–04–25 | 0 | daytime |
5 | GF5B AHSI | 2023–04–25 | 0.1 | daytime |
6 | GF5B AHSI | 2023–05–02 | 9.2 | daytime |
7 | GF5B AHSI | 2023–05–02 | 9.6 | daytime |
8 | GF5B AHSI | 2023–06–29 | 2.4 | daytime |
9 | GF5B AHSI | 2023–07–22 | 8.1 | daytime |
10 | GF5B AHSI | 2023–07–29 | 2.1 | daytime |
11 | GF5B AHSI | 2023–08–28 | 3.9 | daytime |
12 | GF5B AHSI | 2023–09–04 | 0.2 | daytime |
13 | GF5B AHSI | 2023–09–04 | 0.2 | daytime |
14 | GF5B AHSI | 2023–10–02 | 0.3 | daytime |
15 | ZY01E AHSI | 2023–11–26 | 6 | daytime |
16 | ZY01F AHSI | 2023–08–24 | 10 | daytime |
Remote Sensing Data Source | Band Combination | Type | Producer Accuracy/% | User Accuracy/% | Overall Accuracy/% | Kappa Coefficient |
---|---|---|---|---|---|---|
GF5B | B86-B99 | Water | 92.23 | 94.44 | 93.61 | 0.8425 |
Shaded area vegetation | 80.57 | 76.84 | ||||
Bright area vegetation | 96.25 | 90.59 | ||||
ZY1–02D/E | B32-B73 | Water | 90.13 | 91.18 | 97.74 | 0.9656 |
Shaded area vegetation | 86.68 | 80.17 | ||||
Bright area vegetation | 94.23 | 98.49 |
County | Estimated Average Surface Temperature (°C) | Proportion of Area (%) | Geothermal Hotspot |
---|---|---|---|
Gonghe County | 43.64 | 42.18 | 23 |
Guinan County | 38.21 | 24.14 | 3 |
Guide County | 37.13 | 15.01 | 14 |
Ulan County | 28.29 | 8.74 | 0 |
Xinghai County | 22.78 | 6.20 | 0 |
Jainca County | 34.31 | 3.54 | 0 |
Tianjun County | 18.13 | 0.10 | 0 |
Tongren | 20.42 | 0.08 | 0 |
Hui Autonomous County of Hualong | 27.85 | 0.01 | 0 |
County | Geothermal Hotpots | Minimum Land Surface Temperature (°C) | Maximum Land Surface Temperature (°C) | Average Land Surface Temperature (°C) |
---|---|---|---|---|
Gonghe County | 23 | 27.28 | 42.80 | 35.91 |
Guinan County | 3 | 27.54 | 33.35 | 29.76 |
Guide County | 14 | 29.41 | 45.80 | 37.57 |
Gonghe Basin | 40 | 27.28 | 45.80 | 36.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Xin, R.; Zhang, X.; Zhang, S.; Li, D.; Li, X.; Zheng, X.; Fu, Y. Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index. Remote Sens. 2025, 17, 3485. https://doi.org/10.3390/rs17203485
Li Z, Xin R, Zhang X, Zhang S, Li D, Li X, Zheng X, Fu Y. Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index. Remote Sensing. 2025; 17(20):3485. https://doi.org/10.3390/rs17203485
Chicago/Turabian StyleLi, Zongren, Rongfang Xin, Xing Zhang, Shengsheng Zhang, Delin Li, Xiaomin Li, Xin Zheng, and Yuanyuan Fu. 2025. "Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index" Remote Sensing 17, no. 20: 3485. https://doi.org/10.3390/rs17203485
APA StyleLi, Z., Xin, R., Zhang, X., Zhang, S., Li, D., Li, X., Zheng, X., & Fu, Y. (2025). Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index. Remote Sensing, 17(20), 3485. https://doi.org/10.3390/rs17203485