FAWT-Net: Attention-Matrix Despeckling and Haar Wavelet Reconstruction for Small-Scale SAR Ship Detection
Abstract
Highlights
- FAWT-Net introduces a unified framework integrating attention-matrix despeckling, Haar wavelet-based feature reconstruction, and aspect-ratio-aware WH-IoU loss for small-scale ship detection in SAR images.
- Compared with the existing methods, this method increases the AP50 by 1.3% and the APS by 0.8% on the SSDD and LS-SSDD datasets. Moreover, the recall rate is increased by 2.2%. It has a significant improvement in the detection of small targets under low signal-to-noise ratio conditions.
- The attention-matrix despeckling module effectively suppresses coherent speckle noise interference, enabling the network to focus on target locations even when noise occupies more pixels than the ship itself.
- The Haar wavelet reconstruction during upsampling preserves detailed ship contours, significantly enhancing the detection of small targets in complex maritime scenes with minimal computational overhead.
Abstract
1. Introduction
- Aiming at the widely existing speckle noise in SAR images, inspired by the transformer structure, we proposed a speckle noise-filtering method using the attention matrix. This method can effectively reduce the interference of speckle noise on ship recognition and enable the network to focus on the target location.
- In response to the problem of easy feature loss in small-scale ship target detection, we designed a feature-enhancement method based on the discrete wavelet transform. This method is applied in the upsampling stage and can enable the network to effectively retain ship features.
- The WH-IoU loss that can take into account the height-to-width ratio of ships is effectively integrated, which further enables the detection box to conform to the target.
- An sub-image feature splicing downsampling method is integrated to retain more features during the downsampling stage of the backbone, further enhancing the effectiveness of the filtering and feature-enhancement methods.
- The chapter arrangement is as follows: Section 2 discusses the related works; Section 3 elaborates on the core structure of FAWT-Net; Section 4 introduces the experimental methods; Section 5 presents the results of various experiments; Section 6 conducts an in-depth discussion on the work of this paper and proposes the directions for future work; Section 7 provides a summary.
2. Related Works
2.1. General Deep Learning-Based Architectures for SAR Ship Detection
2.2. Anchor-Free and Transformer Architectures for Small-Scale SAR Ship Detection
3. Methodology
3.1. Architecture of FAWT-Net
3.2. Filtering with Attention Matrix (FAM)
3.3. Haar Wavelet Transform (HWT)
3.4. The Boundary Width-to-Height Ratio (WH-IoU) Loss
4. Experiment
4.1. Dataset and Training Details
4.2. Evaluation Criteria
5. Results
5.1. Quantitative Results
5.2. Qualitative Results
5.3. Ablation Experiment Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Ouyang, Y.; Yang, M.; Guo, J.; Li, Y. ORPSD: Outer Rectangular Projection-Based Representation for Oriented Ship Detection in SAR Images. Remote Sens. 2025, 17, 1511. [Google Scholar] [CrossRef]
- Xie, T.; Liu, M.; Zhang, M.; Qi, S.; Yang, J. Ship Detection Based on a Superpixel-Level CFAR Detector for SAR Imagery. Int. J. Remote Sens. 2022, 43, 3412–3428. [Google Scholar] [CrossRef]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of Parameter Estimation for Generalized Gamma Distribution and Its Application to Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 9626–9635. [Google Scholar]
- Zhao, J.; Ding, Z.; Zhou, Y.; Zhu, H.; Du, W.-L.; Yao, R.; El Saddik, A. RQFormer: Rotated Query Transformer for End-to-End Oriented Object Detection. Expert Syst. Appl. 2025, 266, 126034. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zeng, T.; Shi, J.; Shao, Z.; Zhang, T. Group-Wise Feature Fusion R-CNN for Dual Polarization SAR Ship Detection. In Proceedings of the 2023 IEEE Radar Conference, Radarconf23, San Antonio, TX, USA, 1–5 May 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Shao, Z.; Zhang, X.; Xu, X.; Zeng, T.; Zhang, T.; Shi, J. CFAR-Guided Convolution Neural Network for Large Scale Scene SAR Ship Detection. In Proceedings of the 2023 IEEE Radar Conference, Radarconf23, San Antonio, TX, USA, 1–5 May 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Xu, X.; Zhang, X.; Zhang, T.; Zeng, T. Group-Wise Shuffle Attention R-Cnn for Ship Detection in Dual-Polarization Sar Images. In Proceedings of the Igarss 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: New York, NY, USA, 2023; pp. 6410–6413. [Google Scholar]
- Zhou, Z.; Chen, J.; Huang, Z.; Lv, J.; Song, J.; Luo, H.; Wu, B.; Li, Y.; Diniz, P.S.R. HRLE-SARDet: A Lightweight SAR Target Detection Algorithm Based on Hybrid Representation Learning Enhancement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5203922. [Google Scholar] [CrossRef]
- Duan, L.; Lu, X.; Yang, J.; Yang, H.; Zhang, S.; Tong, G.; Tan, K.; Dai, Z.; Gu, H. Saturated Interference in SAR: Theoretical Analysis and Suppression Solutions. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2025, 18, 9244–9261. [Google Scholar] [CrossRef]
- Xiao, Z.; He, F.; Sun, Z.; Zhang, Z. Mitigation of Suppressive Interference in AMPC SAR Based on Digital Beamforming. Remote Sens. 2024, 16, 2812. [Google Scholar] [CrossRef]
- Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A Review on SAR Image and Its Despeckling. Arch. Comput. Method Eng. 2021, 28, 4633–4653. [Google Scholar] [CrossRef]
- Aksoy, G.; Nar, F. Multiplicative-Additive Despeckling in SAR Images. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1871–1885. [Google Scholar] [CrossRef]
- de Medeiros, D.d.S.; Garcia, F.D.A.; Alves, D.I.; da Costa, R.F.; Machado, R.; Santos Filho, J.C.S. CA-CFAR Detection for SAR Systems Over Correlated Gamma-Distributed Clutter. IEEE Geosci. Remote Sens. Lett. 2024, 21, 8003605. [Google Scholar] [CrossRef]
- Huang, P.; Zou, Z.; Xia, X.-G.; Liu, X.; Liao, G. A Statistical Model Based on Modified Generalized-K Distribution for Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8015805. [Google Scholar] [CrossRef]
- Angelliaume, S.; Rosenberg, L.; Ritchie, M. Modeling the Amplitude Distribution of Radar Sea Clutter. Remote Sens. 2019, 11, 319. [Google Scholar] [CrossRef]
- Ritchie, M.A.; Woodbridge, K.; Stove, A.G. Analysis of Sea Clutter Distribution Variation with Doppler Using the Compound K-Distribution. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; IEEE: New York, NY, USA, 2010; pp. 495–499. [Google Scholar]
- Sun, Z.; Leng, X.; Zhang, X.; Zhou, Z.; Xiong, B.; Ji, K.; Kuang, G. Arbitrary-Direction SAR Ship Detection Method for Multiscale Imbalance. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5208921. [Google Scholar] [CrossRef]
- Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship Detection in High-Resolution SAR Images. Remote Sens. 2021, 13, 4209. [Google Scholar] [CrossRef]
- Guan, T.; Chang, S.; Deng, Y.; Xue, F.; Wang, C.; Jia, X. Oriented SAR Ship Detection Based on Edge Deformable Convolution and Point Set Representation. Remote Sens. 2025, 17, 1612. [Google Scholar] [CrossRef]
- Lei, S.; Qiu, X.; Ding, C.; Lei, S. A Feature Enhancement Method Based on the Sub-Aperture Decomposition for Rotating Frame Ship Detection in Sar Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium Igarss, Brussels, Belgium, 12–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 3573–3576. [Google Scholar]
- Wu, F.; Hu, T.; Xia, Y.; Ma, B.; Sarwar, S.; Zhang, C. WDFA-YOLOX: A Wavelet-Driven and Feature-Enhanced Attention YOLOX Network for Ship Detection in SAR Images. Remote Sens. 2024, 16, 1760. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Gu, D.; Xu, X. Multi-Feature Extraction of Ships From SAR Images. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Yuan, Z., Wang, L., Xu, W., Yu, K., Eds.; IEEE: New York, NY, USA, 2013; Volume 1, pp. 454–458. [Google Scholar]
- Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR Detection of Ship Targets in Very High Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 811–815. [Google Scholar]
- Charalampidis, D. Target Detection Based on Multiresolution Fractal Analysis. Int. Soc. Opt. Photonics 2007, 6567, 65671B. [Google Scholar]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Wang, J.; Quan, S.; Xing, S.; Li, Y.; Wu, H.; Meng, W. PSO-Based Fine Polarimetric Decomposition for Ship Scattering Characterization. ISPRS J. Photogramm. Remote Sens. 2025, 220, 18–31. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; IEEE: New York, NY, USA, 2015; pp. 1440–1448. [Google Scholar]
- Yan, X.; Chen, Z.; Xu, A.; Wang, X.; Liang, X.; Lin, L. Meta R-CNN: Towards General Solver for Instance-Level Low-Shot Learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 9576–9585. [Google Scholar]
- Qiao, L.; Zhao, Y.; Li, Z.; Qiu, X.; Wu, J.; Zhang, C. DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV 2021), Montreal, QC, Canada, 10–17 October 2021; IEEE: New York, NY, USA, 2021; pp. 8661–8670. [Google Scholar]
- Hu, R.; Lin, H.; Lu, Z.; Xia, J. Despeckling Representation for Data-Efficient SAR Ship Detection. IEEE Geosci. Remote Sens. Lett. 2025, 22, 4002005. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, X.; Shi, J.; Wei, S. A Moving Target Detection Method Based on Yolo for Dual-Beam Sar. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium Igarss, Brussels, Belgium, 12–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 5315–5318. [Google Scholar]
- Wu, S.; Zhang, L. Using Popular Object Detection Methods for Real Time Forest Fire Detection. In Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; IEEE: New York, NY, USA, 2018; Volume 1, pp. 280–284. [Google Scholar]
- Xu, X.; Liang, W.; Zhao, J.; Gao, H. Tiny FCOS: A Lightweight Anchor-Free Object Detection Algorithm for Mobile Scenarios. Mobile Netw. Appl. 2021, 26, 2219–2229. [Google Scholar] [CrossRef]
- Liu, S.; Chi, J.; Wu, C. FCOS-Lite: An Efficient Anchor-Free Network for Real-Time Object Detection. In Proceedings of the 33rd Chinese Control and Decision Conference (CCDC 2021), Kunming, China, 22–24 May 2021; IEEE: New York, NY, USA, 2021; pp. 1519–1524. [Google Scholar]
- Zhu, M.; Hu, G.; Li, S.; Zhou, H.; Wang, S.; Feng, Z. A Novel Anchor-Free Method Based on FCOS plus ATSS for Ship Detection in SAR Images. Remote Sens. 2022, 14, 2034. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, M. AFSar: An Anchor-Free SAR Target Detection Algorithm Based on Multiscale Enhancement Representation Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5219514. [Google Scholar] [CrossRef]
- Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A Visual Transformer Based on Contextual Joint Representation Learning for SAR Ship Detection. Remote Sens. 2022, 14, 1488. [Google Scholar] [CrossRef]
- Chen, B.; Yu, C.; Zhao, S.; Song, H. An Anchor-Free Method Based on Transformers and Adaptive Features for Arbitrarily Oriented Ship Detection in SAR Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 2012–2028. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Z.; Liu, J.; Wu, C. TSDet: End-to-End Method with Transformer for SAR Ship Detection. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Zhou, Z.; Cui, Z.; Zang, Z.; Meng, X.; Cao, Z.; Yang, J. UltraHi-PrNet: An Ultra-High Precision Deep Learning Network for Dense Multi-Scale Target Detection in SAR Images. Remote Sens. 2022, 14, 5596. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, L.; Wang, X.; Li, G.; He, Y.; Liu, Y. RDB-DINO: An Improved End-to-End Transformer with Refined De-Noising and Boxes for Small-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5200517. [Google Scholar] [CrossRef]
- Zou, B.; Qin, J.; Zhang, L. Vehicle Detection Based on Semantic-Context Enhancement for High-Resolution SAR Images in Complex Background. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4503905. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Guo, J.; Li, Y.; Gao, X. BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images. Remote Sens. 2025, 17, 388. [Google Scholar] [CrossRef]
- Alpers, W.; Bignami, F. Small-Scale and Sub-Mesoscale Phenomena Associated with Upwelling Studied by Sar. In Proceedings of the Igarss 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: New York, NY, USA, 2020; pp. 3537–3540. [Google Scholar]
- Alessi, M.A.; Chirico, P.G.; Sunder, S.; O’Pry, K.L. Detection and Monitoring of Small-Scale Diamond and Gold Mining Dredges Using Synthetic Aperture Radar on the Kadei (Sangha) River, Central African Republic. Remote Sens. 2023, 15, 913. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Deng, J.; Guo, Y.; Liu, S.; Zhang, J. MASFF-Net: Multiazimuth Scattering Feature Fusion Network for SAR Target Recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 19425–19440. [Google Scholar] [CrossRef]
- Deng, J.; Wang, W.; Zhang, H.; Zhang, T.; Zhang, J. PolSAR Ship Detection Based on Superpixel-Level Contrast Enhancement. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4008805. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Yuan, Z.; Lin, Q. A Novel Fusion Framework without Pooling for Noisy SAR Image Classification. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: New York, NY, USA, 2020; pp. 3531–3536. [Google Scholar]
- Sunkara, R.; Luo, T. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Part III, Grenoble, France, 19–23 September 2022; Amini, M.R., Canu, S., Fischer, A., Guns, T., Novak, P.K., Tsoumakas, G., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2023; Volume 13715, pp. 443–459. [Google Scholar]
- Guan, T.; Chang, S.; Wang, C.; Jia, X. SAR Small Ship Detection Based on Enhanced YOLO Network. Remote Sens. 2025, 17, 839. [Google Scholar] [CrossRef]
- Hu, S.; Gao, F.; Zhou, X.; Dong, J.; Du, Q. Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5504005. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Hu, X.; Li, Z.; Li, M. A Novel Lightweight Attention-Discarding Transformer for High-Resolution SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4006405. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, W.; Tian, S.; Zhang, Z. WAFormer: Ship Detection in SAR Images Based on Window-Aware Swin-Transformer. In Proceedings of the Pattern Recognition and Computer Vision, Proceedings of the Chinese Conference, PRCV 2022, Pt III, Urumqi, China, 18–20 October 2024; Yu, S., Zhang, Z., Yuen, P.C., Han, J., Tan, T., Guo, Y., Lai, J., Zhang, J., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2022; Volume 13536, pp. 524–536. [Google Scholar]
- Hou, X.; Han, M.; Gong, C.; Qian, X. SAR Complex Image Data Compression Based on Quadtree and Zerotree Coding in Discrete Wavelet Transform Domain: A Comparative Study. Neurocomputing 2015, 148, 561–568. [Google Scholar] [CrossRef]
- Kanagaraj, H.; Muneeswaran, V. Image Compression Using HAAR Discrete Wavelet Transform. In Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS’ 20), Coimbatore, India, 5–6 March 2020; IEEE: New York, NY, USA, 2020; pp. 271–274. [Google Scholar]
- Li, W.; Guo, H.; Liu, X.; Liang, K.; Hu, J.; Ma, Z.; Guo, J. Efficient Face Super-Resolution via Wavelet-Based Feature Enhancement Network. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 28 October–1 November 2024. [Google Scholar]
- Zhang, H.; Zhang, S. Shape-IoU: More Accurate Metric Considering Bounding Box Shape and Scale. arXiv 2024, arXiv:2312.17663. [Google Scholar]













| Dataset | Size (pixel) | Image Numbers | Resolution (m) | Polarization Mode |
|---|---|---|---|---|
| SSDD | 390 × 205–600 × 500 | 1160 | 1–15 | VV VH VH HV |
| LS-SSDD | 800 × 800 24,000 × 16,000 | 9064 sub-images 15 wide-format images | 0.5–15 |
| Method | AP | AP50 | AP75 | APS | Flops (G) | Params (M) | FPS |
|---|---|---|---|---|---|---|---|
| Faster RCNN | 66.3 | 96.2 | 76.5 | 65.3 | 105.4 | 43.9 | 7.48 |
| Yolov8m | 55.3 | 92.5 | 63.5 | 53.7 | 10.2 | 2.8 | 25.12 |
| Centernet | 66.7 | 96.1 | 78.9 | 61.5 | - | - | - |
| Solov2 | 39.7 | 72.4 | 43.2 | 32.1 | - | - | - |
| HRNet | 59.0 | 90.6 | 69.2 | 56.5 | - | - | - |
| PKINet | 56.9 | 92.9 | 71.7 | 56.7 | 12.9 | 4.21 | 21.18 |
| HTC | 60.5 | 92.7 | 69.1 | 56.3 | - | - | 5.52 |
| CRTransSar | - | 97.0 | 76.2 | - | - | - | - |
| FESAR | 64.8 | 96.7 | 77.1 | 62.0 | 46.8 | 3.5 | - |
| SAR-CNN | 63.2 | 92.1 | 75.2 | 63.8 | 101.9 | - | - |
| Ours | 67.6 | 97.5 | 80.1 | 66.1 | 9.0 | 3.16 | 26.52 |
| Method | AP | AP50 | AP75 | R | Flops (G) | Params (M) | FPS |
|---|---|---|---|---|---|---|---|
| Faster RCNN | 26.3 | 73.1 | 50.3 | 68.9 | 105.4 | 43.9 | - |
| Yolov8m | 21.6 | 68.4 | 48.8 | 74.0 | 10.2 | 2.8 | 19.10 |
| Centernet | 26.9 | 72.5 | 55.4 | 65.6 | - | - | - |
| Solov2 | 16.3 | 47.1 | 27.2 | 35.2 | - | - | - |
| HRNet | 20.5 | 63.6 | 40.5 | 63.7 | - | - | - |
| PKINet | 27.1 | 73.3 | 53.9 | 72.1 | 12.9 | 4.21 | 18.47 |
| HTC | 22.3 | 66.5 | 47.6 | 67.9 | - | - | - |
| FESAR | - | 72.0 | - | 60.4 | 46.8 | 3.5 | - |
| Ours | 29.8 | 74.7 | 56.1 | 76.2 | 9.0 | 3.16 | 20.28 |
| SPD | FAM | HWT | WH-IoU | P | R | AP50 | F1 |
|---|---|---|---|---|---|---|---|
| - | - | √ | - | 87.8 | 81.7 | 91.4 | 0.85 |
| - | √ | - | - | 88.5 | 82.5 | 91.2 | 0.85 |
| - | √ | - | √ | 91.9 | 83.7 | 93.6 | 0.88 |
| - | √ | √ | √ | 93.7 | 84.2 | 95.1 | 0.89 |
| √ | √ | √ | √ | 94.8 | 86.2 | 97.5 | 0.90 |
| WH-IoU | P | R | AP50 | F1 |
|---|---|---|---|---|
| × | 90.2 | 83.7 | 93.1 | 0.87 |
| √ | 92.9 | 84.5 | 95.6 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, Z.; Chang, S. FAWT-Net: Attention-Matrix Despeckling and Haar Wavelet Reconstruction for Small-Scale SAR Ship Detection. Remote Sens. 2025, 17, 3460. https://doi.org/10.3390/rs17203460
Zhang Y, Sun Z, Chang S. FAWT-Net: Attention-Matrix Despeckling and Haar Wavelet Reconstruction for Small-Scale SAR Ship Detection. Remote Sensing. 2025; 17(20):3460. https://doi.org/10.3390/rs17203460
Chicago/Turabian StyleZhang, Yangyiyao, Zhongzhen Sun, and Sheng Chang. 2025. "FAWT-Net: Attention-Matrix Despeckling and Haar Wavelet Reconstruction for Small-Scale SAR Ship Detection" Remote Sensing 17, no. 20: 3460. https://doi.org/10.3390/rs17203460
APA StyleZhang, Y., Sun, Z., & Chang, S. (2025). FAWT-Net: Attention-Matrix Despeckling and Haar Wavelet Reconstruction for Small-Scale SAR Ship Detection. Remote Sensing, 17(20), 3460. https://doi.org/10.3390/rs17203460

