Quantifying Elevation Changes Under Engineering Measures Using Multisource Remote Sensing and Interpretable Machine Learning: A Case Study of the Chinese Loess Plateau
Abstract
Highlights
- Interpretable machine learning models identify the relative importance and spatial patterns of environmental and anthropogenic factors affecting elevation change.
- The transparent analytical framework supports land management and targeted implementation of erosion control measures on the Loess Plateau.
- This approach bridges remote sensing analytics and geomorphological processes, facilitating large-scale environmental monitoring and sustainable erosion management.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
- (1)
- Terrain data
- (2)
- Engineering measurement data
- (3)
- Basin data
- (4)
- Environmental data
2.2. Study Area
2.3. Method
2.3.1. Data Preprocessing
- Vertical datum transformation
- 2.
- Determination of basin units
- 3.
- Factor calculation
2.3.2. Analysis of EM Shapes and Spatial Distribution
2.3.3. Quantifying Elevation Changes Under the Impact of EMs
2.3.4. Determining the Factors Influencing Elevation Changes
3. Results
3.1. Characteristics of Engineering Measures
3.2. Influence of Engineering Measures on Elevation Changes
3.2.1. Role of Engineering Measures Under Different Precipitation Conditions
3.2.2. Roles of Engineering Measures Under Different Ecological Conditions
3.3. Driving Factors of Elevation Changes
4. Discussion
4.1. EM Efficiency from the Remote Sensing Perspective
4.2. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation management decreases surface runoff and soil erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Ran, Q.; Su, D.; Li, P.; He, Z. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. J. Hydrol. 2012, 424, 99–111. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.; Yang, S.; Li, H.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Deng, J.; Yu, S.; Zhao, Y. Long-term gully erosion and its response to human intervention in the tableland region of the chinese loess plateau. Remote Sens. 2021, 13, 5053. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rai, A.; Abdelrahman, K.; Rai, S.C.; Tiwari, A. Land degradation, overland flow, soil erosion, and nutrient loss in the Eastern Himalayas, India. Land 2022, 11, 179. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; de Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Quine, T.A.; Van Oost, K. Insights into the future of soil erosion. Proc. Natl. Acad. Sci. USA 2020, 117, 23205–23207. [Google Scholar] [CrossRef]
- Singh, R. Soil and Water Conservation Structures Design; Springer Nature: Singapore, 2023; Volume 123. [Google Scholar]
- Fang, N.; Zeng, Y.; Ran, L.; Wang, Z.; Lu, X.; Wang, Z.; Yang, X.; Jian, J.; Yu, Q.; Ni, L. Substantial role of check dams in sediment trapping and carbon sequestration on the Chinese Loess Plateau. Commun. Earth Environ. 2023, 4, 65. [Google Scholar] [CrossRef]
- Chauhan, C.; Singh, M.; Vinayak, A.B.; Uday, K.V. Quantification of the effectiveness of mitigation measures on erosion potential of soil with image analysis. J. Soils Sediments 2024, 24, 98–110. [Google Scholar] [CrossRef]
- Ediş, S.; Timur, Ö.B.; Tuttu, G.; Aytaş, İ.; Göl, C.; Özcan, A.U. Assessing the impact of engineering measures and vegetation restoration on soil erosion: A case study in Osmancık, Türkiye. Sustainability 2023, 15, 12001. [Google Scholar] [CrossRef]
- Dorren, L.; Rey, F. A review of the effect of terracing on erosion. In Briefing Papers of the 2nd SCAPE Workshop; SCAPE: New York, NY, USA, 2004; pp. 97–108. [Google Scholar]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef]
- Bussi, G.; Rodríguez-Lloveras, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol. Earth Syst. Sci. 2013, 17, 3339–3354. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Hu, G.; Dang, W.; Tang, G.; Strobl, J. Extracting check dam areas from high-resolution imagery based on the integration of object-based image analysis and deep learning. Land Degrad. Dev. 2021, 32, 2303–2317. [Google Scholar] [CrossRef]
- Haidong, G.; Mengdie, W.; Xinjing, H. Check dams in the Yellow River basin: Sediment reduction efficiency and future development. Land Degrad. Dev. 2024, 35, 4042–4054. [Google Scholar] [CrossRef]
- Li, D.; Tong, Q.; Li, R.; Gong, J.; Zhang, L. Current issues in high-resolution earth observation technology. Sci. China Earth Sci. 2012, 55, 1043–1051. [Google Scholar] [CrossRef]
- NASA JPL. Shuttle Radar Topography Mission Global 1 Arc Second; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2013. [Google Scholar] [CrossRef]
- Airbus Defence and Space GmbH. Copernicus DEM: Copernicus Digital Elevation Model: Product Handbook; RFP/RFI-No.: AO/1-9422/18/I-LG; Airbus Defence and Space GmbH: Taufkirchen, Germany, 2020; pp. 1–3. [Google Scholar]
- Cao, B.; Yu, L.; Naipal, V.; Ciais, P.; Li, W.; Zhao, Y.; Wei, W.; Chen, D.; Liu, Z.; Gong, P. A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth Syst. Sci. Data Discuss. 2020, 13, 2437–2456. [Google Scholar] [CrossRef]
- Zeng, Y.; Jing, T.; Xu, B.; Yang, X.; Jian, J.; Zong, R.; Wang, B.; Dai, W.; Deng, L.; Fang, N. Vectorized dataset of silted land formed by check dams on the Chinese Loess Plateau. Sci. Data 2024, 11, 348. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosystems 2012, 13, Q12004. [Google Scholar] [CrossRef]
- Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G. Terrestrial sediments of the earth: Development of a global unconsolidated sediments map database (GUM). Geochem. Geophys. Geosyst. 2018, 19, 997–1024. [Google Scholar] [CrossRef]
- Iwahashi, J.; Yamazaki, D. Global polygons for terrain classification divided into uniform slopes and basins. Prog. Earth Planet. Sci. 2022, 9, 33. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y.; Aksoy, E.; Batjes, N.; Boateng, E. Harmonized World Soil Database Version 2.0; FAO: Rome, Italy, 2023. [Google Scholar]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC). In Resource and Environment Science Data; Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Wang, G.; Li, Z. Ecological regionalization and overview of the Loess Plateau. Acta Ecol. Sin. 2019, 39, 7389–7397. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Fu, B. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [Google Scholar] [CrossRef]
- Hirt, C.; Featherstone, W.; Marti, U. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J. Geod. 2010, 84, 557–567. [Google Scholar] [CrossRef]
- Fang, K.; Cai, T. An algorithm for strapdown airborne gravity disturbance vector measurement based on high-precision navigation and EGM2008. Sensors 2024, 24, 5899. [Google Scholar] [CrossRef]
- Desmet, P.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar] [CrossRef]
- Peng, S. 1-km monthly precipitation dataset for China (1901–2017). Earth Syst. Sci. Data 2024, 11, 1931–1946. [Google Scholar] [CrossRef]
- Rachunok, B.; Verma, A.; Fletcher, S. Predicting and understanding residential water use with interpretable machine learning. Environ. Res. Lett. 2024, 19, 014069. [Google Scholar] [CrossRef]
- Nikraftar, Z.; Parizi, E.; Saber, M.; Boueshagh, M.; Tavakoli, M.; Esmaeili Mahmoudabadi, A.; Ekradi, M.H.; Mbuvha, R.; Hosseini, S.M. An Interpretable Machine Learning Framework for Unraveling the Dynamics of Surface Soil Moisture Drivers. Remote Sens. 2025, 17, 2505. [Google Scholar] [CrossRef]
- Sonnewald, M.; Lguensat, R.; Jones, D.C.; Dueben, P.D.; Brajard, J.; Balaji, V. Bridging observations, theory and numerical simulation of the ocean using machine learning. Environ. Res. Lett. 2021, 16, 073008. [Google Scholar] [CrossRef]
- Temenos, A.; Temenos, N.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Interpretable deep learning framework for land use and land cover classification in remote sensing using SHAP. IEEE Geosci. Remote Sens. Lett. 2023, 20, 8500105. [Google Scholar] [CrossRef]
- Mosca, E.; Szigeti, F.; Tragianni, S.; Gallagher, D.; Groh, G. SHAP-based explanation methods: A review for NLP interpretability. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12–17 October 2022; pp. 4593–4603. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zou, Y.; Huang, J.; Luo, X.; Yang, L.; Li, M.; Yang, P.; Ji, X.; Li, Y. An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest. Geomat. Nat. Hazards Risk 2024, 15, 2347421. [Google Scholar] [CrossRef]
Data Type | Dataset | Factors |
---|---|---|
Terrain data | COP30 [23] and SRTM DEM [22] | MECB |
SRTM DEM [22] | Mean LS factor in the Universal Soil Loss Equation (USLE) [39] | |
Engineering measure data | Check dam [25] | Variation in check dam volume Sum of check dam volume Number of check dams Area proportion of check dams in basins |
Terrace [24] | Area proportion of terraces in basins | |
Basin data | HydroBASINS L8 and L12 [29] | W-L ratio Basin area |
Geological data | Global Lithological Map (GLiM) [27] | Variety of lithological types Major lithological types in basins |
Global Unconsolidated Sediment Map (GUM) [28] | Variety of unconsolidated sediment types Major unconsolidated sediment type in basins | |
Climatic data | Precipitation [40] | Mean precipitation in 1982–2022 Mean R factor |
Köppen climate type [30] | Major climate types in basins | |
Geomorphological data | Landform type [29] | Variety of landform types Major landform types in basins |
Soil data | HWSD 2.0 [31] | Mean sand content Mean silt content Mean clay content Mean organ carbon content Mean K factor in USLE [39] |
Surface information | forest canopy height [32] | Mean forest height |
Land use data [33] | Mean P factor in USLE [39] | |
Ecological type [34] | Major ecological types in basins |
Type | Name | Formula | Description |
---|---|---|---|
Shape indices | Perimeter-Area Ratio (PARA) | indicates the unit perimeter; indicates the unit area. | PARA is a commonly used metric for quantifying shape complexity. |
Shape Index (SI) | indicates the unit perimeter; indicates the unit area. | SI is the most basic measure for assessing patch shape complexity, addressing numerical scaling issues inherent in perimeter-to-area ratios by normalization against a square standard. The patch shape is square when SI equals 1; the SI increases as shape complexity rises. | |
Fractal Dimension Index (FRAC) | indicates the unit perimeter; indicates the unit area. | The FRAC is one of the most commonly employed metrics, reflecting the complexity of shapes across a range of spatial scales and overcoming the issue of nonnormalized values inherent in perimeter-to-area ratios. For shapes with extremely simple perimeters, the FRAC approaches 1, whereas for those with highly convoluted, plane-filling perimeters, the FRAC approaches 2. A larger FRAC indicates higher patch complexity. | |
Spatial distribution indices | Global Moran’s I | xj represents the attribute value of the j-th basin; denotes the average attribute value across all basins; wij represents the spatial weight matrix between basins, where each element defines the spatial relationship or interaction; s is the sum of all elements in the spatial weight matrix; n represents the total number of basins. | The Global Moran’s I index is used to determine whether a spatial phenomenon exhibits spatial autocorrelation within a region. Its value ranges from −1 to 1. Positive values indicate positive spatial autocorrelation, meaning that similar attribute values are clustered in space. Negative values indicate negative spatial autocorrelation, implying that neighboring locations tend to have dissimilar values. Values close to 0 suggest the absence of spatial autocorrelation, meaning the spatial distribution of the data is random. |
Local Moran’s I | xi where the notations are the same as for Global Moran’s I | The Local Moran’s I is an extension of the Global Moran’s I, allowing for the identification of statistically significant hotspots, cold spots, and spatial outliers. By conducting spatial clustering using the Local Moran’s I, a Local Indicators of Spatial Association (LISA) cluster map can be generated. This map categorizes spatial clustering into five types: high–high (H–H), high–low (H–L), low–high (L–H), low–low (L-L), and nonsignificant clusters. Utilizing the Local Moran’s I, we can effectively display the spatial distribution of the study objects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhu, Q.; Li, S. Quantifying Elevation Changes Under Engineering Measures Using Multisource Remote Sensing and Interpretable Machine Learning: A Case Study of the Chinese Loess Plateau. Remote Sens. 2025, 17, 3451. https://doi.org/10.3390/rs17203451
Zhou S, Zhu Q, Li S. Quantifying Elevation Changes Under Engineering Measures Using Multisource Remote Sensing and Interpretable Machine Learning: A Case Study of the Chinese Loess Plateau. Remote Sensing. 2025; 17(20):3451. https://doi.org/10.3390/rs17203451
Chicago/Turabian StyleZhou, Songhe, Qiuyue Zhu, and Sijin Li. 2025. "Quantifying Elevation Changes Under Engineering Measures Using Multisource Remote Sensing and Interpretable Machine Learning: A Case Study of the Chinese Loess Plateau" Remote Sensing 17, no. 20: 3451. https://doi.org/10.3390/rs17203451
APA StyleZhou, S., Zhu, Q., & Li, S. (2025). Quantifying Elevation Changes Under Engineering Measures Using Multisource Remote Sensing and Interpretable Machine Learning: A Case Study of the Chinese Loess Plateau. Remote Sensing, 17(20), 3451. https://doi.org/10.3390/rs17203451