69-Year Geodetic Mass Balance of Nevado Coropuna (Peru), the World’s Largest Tropical Icefield, from 1955 to 2024
Abstract
Highlights
- First comprehensive mass balance study of the world’s largest tropical icefield through geodetical mass balance.
- First use of the PeruSAT-1 satellite for glacier mass balance calculation.
- Results show an accelerating mass loss and general ice thinning since 1986, except for rock glaciers and debris-covered glaciers.
- Calculated mass balance places Nevado Coropuna in a transition zone between the Tropical and Dry Andes in terms of ice response to global warming.
Abstract
1. Introduction
- ‑
- Evaluate the mass balance of the entire glacier system through the first application of geodetic techniques in Nevado Coropuna.
- ‑
- Construct the longest possible temporal series of mass balance (1955–2024) to serve as a baseline for subsequent monitoring on the evolution of the Coropuna glacier system.
- ‑
- Provide a robust methodology replicable in future research in critical sites for water supply in the Peruvian Andes.
- ‑
- Give first order information on the effects of global warming on the largest and one of the most complex tropical ice masses of the world.
2. Study Area
2.1. Glaciovolcanic Settings
2.2. Hydrographic and Climatic Settings
2.3. Socioeconomic Settings
3. Materials and Methods
3.1. Aerial Images
- ‑
- Aerial IMAGE 1955: This DEM was constructed from the digital version (.shp) of contour lines generated by the Peruvian geographic survey (IGN). These contours were originated from the Peruvian national topographic map sheets 31Q-Cotahuasi and 31R-Chuquibamba (1:100,000 scale), which were compiled in 1967 by the United States Air Force (USAF) using stereophotogrammetric methods, based on photographs acquired in 1955.
- ‑
- Aerial IMAGE 1986: This DEM was derived from a flight by the Peruvian air force photogrammetric service (SAN).
DEM | Photographs Number | Date | Focal Distance (mm) | Altitude Above the Surface (m) | Approximate Scale |
---|---|---|---|---|---|
1955 | 14687–14700 (14) | 15 July 1955 | 153.62 | 9.600 | 1:60.000 |
15082–15096 (17) | 16 July 1955 | ||||
15170–15185 (16) | 16 July 1955 | ||||
15488–15502 (15) | 17 July 1955 | ||||
1986 | 1402–1413 (12) | 21 October 1986 | 152.76 | 12.800 | 1:80.000 |
1500–1523 (24) |
3.2. Satellite Images
3.3. PeruSAT-1 Satellite
3.4. Ground Control Points (GCPs)
3.5. Stereo Geometry
3.6. DEM Creation
3.7. Precise Statistical Analysis of DEM Accuracy
3.7.1. Robust Statistics and Alignment
3.7.2. Heteroscedasticity, Spatial Correlation, and Error Propagation
3.8. Glacier Limit Delineation
3.9. Outlier Analysis and Removal for Glaciers and Gap Interpolation
3.10. Glacier Mass Balance
4. Results
4.1. Reference DEM (DEMref) Quality Assessment
4.2. DEM Visual Evaluation and Histogram Analysis
4.3. Difference Analysis and DEM Correlation
4.4. Data Quality Assessment: Heterocedasticity, Spatial Correlation and Error Propagation
4.5. Outlier Removal and Gap Interpolation
4.6. Total Mass Balance
4.7. Mass Balance per Elevation and Timeframe
4.8. Mass Balance per Glacier
5. Discussion
5.1. Sources of Error and Data Reliability
5.2. Results Comparison with Other Glacier Mass Balance Works
5.3. Local Distribution of the Measured Mass Balance in Nevado Coropuna
5.3.1. Mass Balance per Altitudinal Belt and Glacier Type
5.3.2. Contrasts in Glacier Evolution Between Outlets
5.4. Mass Balance and Climate: The Effect of ENSO Events
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martínez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Urrutia, R.; Vuille, M. Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. 2009, 114, 1–15. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef]
- Lejeune, Y.; Bouilloud, L.; Etchevers, P.; Wagnon, P.; Chevallier, P.; Sicart, J.-E.; Martin, E.; Habets, F. Melting of Snow Cover in a Tropical Mountain Environment in Bolivia: Processes and Modeling. J. Hydrometeorol. 2007, 8, 922–937. [Google Scholar] [CrossRef]
- Wagnon, P.; Lafaysse, M.; Lejeune, Y.; Maisincho, L.; Rojas, M.; Chazarin, J.P. Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Kaser, G. A review of the modern fluctuations of tropical glaciers. Glob. Planet. Change 1999, 22, 93–103. [Google Scholar] [CrossRef]
- Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacis, M.; Yarleque, C.; Elison Timm, O.; et al. Rapid decline of snow and ice in the tropical Andes—Impacts, uncertainties and challenges ahead. Earth-Sci. Rev. 2018, 176, 195–213. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Rabatel, A.; Rivera, A.; Ruiz, L.; Pitte, P.; Ceballos, J.L.; Barcaza, G.; Soruco, A.; Bown, F.; Berthier, E.; et al. A Review of the Current State and Recent Changes of the Andean Cryosphere. Front. Earth Sci. 2020, 8, 99. [Google Scholar] [CrossRef]
- Robson, B.A.; MacDonell, S.; Ayala, Á.; Bolch, T.; Nielsen, P.R.; Vivero, S. Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile. Cryosphere 2022, 16, 647–665. [Google Scholar] [CrossRef]
- Schaffer, N.; MacDonell, S.; Réveillet, M.; Yáñez, E.; Valois, R. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg. Environ. Change 2019, 19, 1263–1279. [Google Scholar] [CrossRef]
- Pereira, S.R.; Díez, B.; Cifuentes-Anticevic, J.; Leray, S.; Fernandoy, F.; Marquardt, C.; Lambert, F. Hydrological connections in a glaciated Andean catchment under permafrost conditions (33°S). J. Hydrol. Reg. Stud. 2023, 45, 101311. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Úbeda, J.; Masías, P.; Pari, W.; Apaza, F.; Vasquez, P.; Ccallata, B.; Concha, R.; Luna, G.; Iparraguirre, J.; et al. Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO). Permafr. Periglac. Process. 2020, 31, 598–609. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, A.; Stone, D.; Drenkhan, F.; Mendoza, D.; Gualán, R.; Huggel, C. Detection and attribution of climate change impacts in coupled natural-human systems in the Andes. Commun. Earth Environ. 2025, 6, 314. [Google Scholar] [CrossRef]
- Yu, A.; Shi, H.; Wang, Y.; Yang, J.; Gao, C.; Lu, Y. A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research. Remote Sens. 2023, 15, 1425. [Google Scholar] [CrossRef]
- Kochtitzky, W.H.; Edwards, B.R.; Enderlin, E.M.; Marino, J.; Marinque, N. Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. J. Glaciol. 2018, 64, 175–184. [Google Scholar] [CrossRef]
- Úbeda, J.; Bonshoms, M.; Iparraguirre, J.; Sáez, L.; De La Fuente, R.; Janssen, L.; Concha, R.; Vásquez, P.; Masías, P. Prospecting Glacial Ages and Paleoclimatic Reconstructions Northeastward of Nevado Coropuna (16° S, 73° W, 6377 m), Arid Tropical Andes. Geosciences 2018, 8, 307. [Google Scholar] [CrossRef]
- Úbeda, J. El Impacto del Cambio Climático en los Glaciares del Complejo Volcánico Nevado Coropuna, (Cordillera Occidental de los Andes Centrales); Docta Complutense repository, Universidad Complutense de Madrid: Madrid, Spain, 2011; Available online: https://hdl.handle.net/20.500.14352/47637 (accessed on 21 September 2025).
- Bromley, G.R.M.; Thouret, J.-C.; Schimmelpfennig, I.; Mariño, J.; Valdivia, D.; Rademaker, K.; Del Pilar Vivanco Lopez, S.; Team, A.; Aumaître, G.; Bourlès, D.; et al. In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru. Bull. Volcanol. 2019, 81, 64. [Google Scholar] [CrossRef]
- Kuentz, A.; Galán de Mera, A.; Ledru, M.P.; Thouret, J.C. Phytogeographical data and modern pollen rain of the Puna belt in southern Peru (Nevado Coropuna, Western Cordillera). J. Biogeogr. 2007, 34, 1762–1776. [Google Scholar] [CrossRef]
- Herreros, J.; Moreno, I.; Taupin, J.-D.; Ginot, P.; Patris, N.; De Angelis, M.; Ledru, M.-P.; Delachaux, F.; Schotterer, U. Environmental records from temperate glacier ice on Nevado Coropuna saddle, southern Peru. Adv. Geosci. 2009, 22, 27–34. [Google Scholar] [CrossRef]
- Bonshoms, M.; Ubeda, J.; Liguori, G.; Körner, P.; Navarro, Á.; Cruz, R. Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations. J. Mt. Sci. 2022, 19, 1849–1873. [Google Scholar] [CrossRef]
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- INEI. Censo Nacional de Población de Perú [Dataset]. 2017. Available online: https://censos2017.inei.gob.pe/redatam/ (accessed on 21 September 2025).
- INRENA. Evaluación de los Recursos Hídricos de la Cuenca del Río Ocoña. Estudio Hidrológico (I). 2007. Available online: https://hdl.handle.net/20.500.12543/3886 (accessed on 21 September 2025).
- Grupo Inclam. Evaluación de Recursos Hídricos en la Cuenca Camaná—Majes—Colca. Autoridad Nacional del Agua. 2015. Available online: https://hdl.handle.net/20.500.12543/7 (accessed on 21 September 2025).
- Quirós, E.; Cuartero, A. Posibilidades estereoscópicas de los datos espaciales. GeoFocus. Int. Rev. Geogr. Inf. Sci. Technol. 2005, 5, 65–76. Available online: https://www.geofocus.org/index.php/geofocus/article/view/78 (accessed on 21 September 2025).
- Jeong, J.; Yang, C.; Kim, T. Geo-positioning accuracy using multiple-satellite images: IKONOS, QuickBird, and KOMPSAT-2 stereo images. Remote Sens. 2015, 7, 4549–4564. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Z.; Wu, C.; Lei, Q.; Gong, W.; Ou, Q.; Zhang, H.; Ren, G.; Li, C. DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology 2019, 336, 107–118. [Google Scholar] [CrossRef]
- Smith, S.M.; Brady, J.M. SUSAN—A New Approach to Low Level Image Processing. Int. J. Comput. Vis. 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Lee, C.; Oh, J.; Hong, C.; Youn, J. Automated generation of a digital elevation model over steep Terrain in Antarctica from high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1186–1194. [Google Scholar] [CrossRef]
- xDEM Contributors. xDEM, (v0.1.0); Zenodo: Geneva, Switzerland, 2024. [CrossRef]
- Hugonnet, R.; Brun, F.; Berthier, E.; Dehecq, A.; Mannerfelt, E.S.; Eckert, N.; Farinotti, D. Uncertainty Analysis of Digital Elevation Models by Spatial Inference From Stable Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6456–6472. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef]
- Rolstad, C.; Haug, T.; Denby, B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. J. Glaciol. 2009, 55, 666–680. [Google Scholar] [CrossRef]
- Barsch, D. Rockglaciers; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Benn, D.; Evans, D.J.A. Glaciers and Glaciation, 2nd ed.; Routledge: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Korona, J.; Berthier, E.; Bernard, M.; Rémy, F.; Thouvenot, E. SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Remote Sens. 2009, 64, 204–212. [Google Scholar] [CrossRef]
- Raup, B.H.; Kieffer, H.H.; Hare, T.M.; Kargel, J.S. Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: Glaciers. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1105–1112. [Google Scholar] [CrossRef]
- Kaser, G.; Osmaston, H. Tropical Glaciers; Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521020961. [Google Scholar]
- Dussaillant, I.; Berthier, E.; Brun, F. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods. Front. Earth Sci. 2018, 6, 8. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- McNabb, R.; Nuth, C.; Kääb, A.; Girod, L. Sensitivity of glacier volume change estimation to DEM void interpolation. Cryosphere 2019, 13, 895–910. [Google Scholar] [CrossRef]
- Toutin, T.; Schmitt, C.; Berthier, E.; Clavet, D. DEM generation over ice fields in the Canadian Arctic with along-track SPOT5 HRS stereo data. Can. J. Remote Sens. 2012, 37, 429–438. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Ignatiuk, D.; Grabiec, M.; Kolondra, L.; Laska, M.; Decaux, L.; Jania, J.; Berthier, E.; Luks, B.; Barzycka, B.; et al. Quality assessment and glaciological applications of digital elevation models derived from space-borne and aerial images over two tidewater glaciers of southern Spitsbergen. Remote Sens. 2019, 11, 1121. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Taylor, L.S.; Quincey, D.J.; Smith, M.W.; Potter, E.R.; Castro, J.; Fyffe, C.L. Multi-Decadal Glacier Area and Mass Balance Change in the Southern Peruvian Andes. Front. Earth Sci. 2022, 10, 863933. [Google Scholar] [CrossRef]
- Seehaus, T.; Malz, P.; Sommer, C.; Lippl, S.; Cochachin, A.; Braun, M. Changes of the tropical glaciers throughout Peru between 2000 and 2016—Mass balance and area fluctuations. Cryosphere 2019, 13, 2537–2556. [Google Scholar] [CrossRef]
- Peduzzi, P.; Herold, C.; Silverio, W. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: The case of Nevado Coropuna (Peru). Cryosphere 2010, 4, 313–323. [Google Scholar] [CrossRef]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Lamantia, K.A.; Larocca, L.J.; Thompson, L.G.; Mark, B.G. El Niño enhances snow-line rise and ice loss on the Quelccaya Ice Cap, Peru. Cryosphere 2024, 18, 4633–4644. [Google Scholar] [CrossRef]
- Wigmore, O.; Mark, B. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. Cryosphere 2017, 11, 2463–2480. [Google Scholar] [CrossRef]
- Kinnard, C.; Ginot, P.; Surazakov, A.; MacDonell, S.; Nicholson, L.; Patris, N.; Rabatel, A.; Rivera, A.; Squeo, F.A. Mass Balance and Climate History of a High-Altitude Glacier, Desert Andes of Chile. Front. Earth Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Kos, A.; Amann, F.; Strozzi, T.; Osten, J.; Wellmann, F.; Jalali, M.; Dufresne, A. The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru. Remote Sens. 2021, 13, 2694. [Google Scholar] [CrossRef]
- King, O.; Turner, A.G.D.; Quincey, D.J.; Carrivick, J.L. Morphometric evolution of Everest region debris-covered glaciers. Geomorphology 2020, 371, 107422. [Google Scholar] [CrossRef]
- Vuille, M.; Franquist, E.; Garreaud, R.; Lavado Casimiro, W.S.; Cáceres, B. Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos. 2015, 120, 3745–3757. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; et al. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef]
- Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere 2015, 9, 1663–1683. [Google Scholar] [CrossRef]
Imagen ID | Acquisition Date | View Angle | Azimuth Angle | Elevation Angle | Height (m) | Pixelsize (m) |
---|---|---|---|---|---|---|
DS_SPOT6_201311231439461 | 23 November 2013 | 14.797° | 106.628° | 75.203° | 703,838.41 | 1.50 |
DS_SPOT6_201311231440116 | 23 November 2013 | 0.576° | 180.785° | 89.424° | 704,287.14 | 1.50 |
DS_SPOT6_201311231440385 | 23 November 2013 | −13.828° | 191.718° | 76.172° | 704,782.81 | 1.50 |
DS_SPOT6_201805191442310 | 19 May 2018 | 10.346° | 12.340° | 79.650° | 703,748.98 | 1.50 |
DS_SPOT6_201805191443049 | 19 May 2018 | 9.247° | 190.480° | 80.750° | 704,366.18 | 1.50 |
WV01_20200818181534 | 18 August 2020 | 8.400° | 125.673° | 81.600° | 496,000.00 | 0.50 |
WV01_20200818181621 | 18 August 2020 | 32.900° | 22.028° | 57.100° | 496,000.00 | 0.50 |
DS_PER1_202306121507020 | 12 June 2023 | 12.000° | 118.000° | 78.000° | 704,655.49 | 0.70 |
DS_PER1_202306121506187 | 12 June 2023 | 11.900° | 92.300° | 78.100° | 703,866.37 | 0.70 |
DS_PHR1A_202408031512364 | 3 August 2024 | 10.327° | 179.940° | 79.670° | 694,000.00 | 0.50 |
DS_PHR1A_202408031513135 | 3 August 2024 | 10.278° | 180.030° | 79.720° | 694,000.00 | 0.50 |
Images | B/H Ratio | Convergence Angle | Bisector Elevation Angle |
---|---|---|---|
SPOT-6 2013 | 0.306 | 19.080° | 81.56° |
SPOT-6 2018 | 0.345 | 19.593° | 89.42° |
WordView-2 2020 | 0.794 | 41.300° | 73.89° |
PerúSAT-1 2023 | 0.423 | 23.890° | 78.34° |
Pléiades 1A 2024 | 0.363 | 20.605° | 79.65° |
Elevation (Z) (m) | Easting (X) (m) | Northing (Y) (m) | |
---|---|---|---|
Mean | 0.54 | 0.22 | 0.44 |
Max | 3.59 | 1.52 | 2.09 |
Min | −2.23 | −1.14 | −1.11 |
RMSE | 1.51 | 0.72 | 0.97 |
Accuracy (95%) | 3.02 | 1.25 | 1.68 |
AERIAL 1955 | AERIAL 1986 | SPOT 2013 | SPOT 2018 (BASE) | WV 2020 | PERUSAT-1 2023 | Pleiades-1A 2024 | |
---|---|---|---|---|---|---|---|
Min. | 4617.60 | 4615.72 | 4609.96 | 4610.67 | 4608.67 | 4611.27 | 4610.38 |
Max. | 6348.04 | 6416.75 | 6510.26 | 6458.05 | 6423.78 | 6421.57 | 6424.02 |
Mean | 5552.85 | 5553.24 | 5546.75 | 5546.6 | 5546.42 | 5545.46 | 5545.42 |
Median | 5549.64 | 5551.81 | 5537.64 | 5536.55 | 5536.80 | 5536.19 | 5536.20 |
Std | 381.29 | 382.14 | 380.89 | 381.31 | 381.38 | 380.67 | 380.67 |
Vertical (m) | Horizontal (m) | ||||
---|---|---|---|---|---|
Mean dif. | NMAD | LE90 | RMSE | CE90 | |
1955 | 0.63 | 12.19 | 23.91 | 20.03 | 42.98 |
1986 | 0.16 | 4.11 | 8.06 | 3.45 | 7.40 |
2013 | −0.11 | 1.70 | 3.32 | 0.52 | 1.11 |
2020 | −0.02 | 1.50 | 2.94 | 0.53 | 1.13 |
2023 | −0.15 | 1.52 | 2.98 | 0.82 | 1.78 |
2024 | −0.01 | 1.370 | 2.68 | 0.79 | 1.70 |
Before Alignment | Elevation (m) | Initial Displacement (Pixels) | Displacement (m) | Horizontal (m) | |||||
---|---|---|---|---|---|---|---|---|---|
Average | NMAD | LE90 | East | North | East | North | RMSE | CE90 | |
SPOT (2018)—Aerial (1955) | 2.072 | 15.728 | 30.827 | −20.75 | 38.152 | −41.5 | 76.304 | 86.859 | 186.400 |
SPOT6 (2018)—Aerial (1986) | 4.168 | 5.994 | 11.748 | −7.588 | −11.438 | −15.176 | −22.876 | 27.452 | 58.912 |
SPOT6 (2018)—SPOT6 (2013) | −1.213 | 1.793 | 3.514 | 0.632 | 2.046 | 1.264 | 4.092 | 4.283 | 9.191 |
WV1 (2020)—SPOT6 (2018) | 0.67 | 1.58 | 3.097 | 0.296 | 0.950 | 0.592 | 1.900 | 1.990 | 4.271 |
PER1 (2023)—SPOT6 (2018) | −0.57 | 1.7 | 3.332 | −0.448 | 1.752 | −0.896 | 3.504 | 3.617 | 7.762 |
PHR1A (2024)—SPOT6 (2018) | −1.95 | 1.7 | 3.332 | −0.69 | 0.876 | −1.38 | 1.752 | 2.230 | 4.786 |
After alignment | Elevation (m) | Displacement (pixels) | Displacement (m) | Horizontal (m) | |||||
Average | NMAD | LE90 | East | North | East | North | RMSE | CE90 | |
SPOT6 (2018)—Aerial (1955) | 0.630 | 12.190 | 23.892 | 2.618 | −9.344 | 5.236 | −18.688 | 19.408 | 41.649 |
SPOT6 (2018)—Aerial (1986) | 0.160 | 4.110 | 8.056 | 0.888 | 1.478 | 1.776 | 2.956 | 3.448 | 7.400 |
SPOT6 (2018)—SPOT6(2013) | 0.110 | 1.700 | 3.332 | −0.035 | −0.257 | −0.070 | −0.514 | 0.519 | 1.113 |
WV1 (2020)—SPOT6 (2018) | −0.020 | 1.500 | 2.940 | −0.160 | −0.210 | −0.320 | −0.420 | 0.528 | 1.133 |
PER1 (2023)—SPOT6 (2018) | −0.150 | 1.520 | 2.979 | −0.334 | −0.245 | −0.668 | −0.490 | 0.828 | 1.778 |
PHR1A (2024)—SPOT6 (2018) | −0.010 | 1.370 | 2.685 | 0.227 | −0.326 | 0.454 | −0.652 | 0.794 | 1.705 |
dhDEM | % of Deleted Area Within the Icecap |
---|---|
1955–1986 | 33.02 |
1986–2013 | 31.57 |
2013–2018 | 23.73 |
2018–2020 | 22.67 |
2020–2023 | 21.81 |
2023–2024 | 22.33 |
dhDEM | Yearly dh Glacier (m) No Outlier Filling | Yearly dh Glacier (m) Local Hypsometry Filling | Average dh Glacier (m) TIN Filling |
---|---|---|---|
1955–1986 | −0.03 ± 0.16 | −0.04 ± 0.16 | -- |
1986–2013 | −0.44 ± 0.02 | −0.43 ± 0.02 | -- |
2013–2018 | −0.27 ± 0.07 | −0.27 ± 0.07 | −0.87 ± 0.07 |
2018–2020 | −0.16 ± 0.08 | −0.17 ± 0.08 | −1.35 ± 0.08 |
2020–2023 | −0.73 ± 0.19 | −0.73 ± 0.19 | −1.34 ± 0.19 |
2023–2024 | −0.19 ± 0.28 | −0.20 ± 0.28 | −0.08 ± 0.28 |
Total m.b. White Glacier (Hm3) | Average m.b. White Glacier (Hm3 yr−1) | Total m.b. Debris-Covered Glacier (Hm3) | Average m.b. Debris-Covered Glacier (Hm3 yr−1) | |
---|---|---|---|---|
1955–1986 | −14.56 ± 5.53 | −0.44 ± 0.17 | -- | -- |
1986–2013 | −135.09 ± 10.55 | −5.01 ± 0.37 | -- | -- |
2013–2018 | −9.81 ± 0.98 | −1.92 ± 0.19 | −2.16 ± 0.30 | −0.03 ± 0.06 |
2020–2018 | −3.16 ± 0.25 | −1.58 ± 0.18 | −3.77 ± 0.14 | −0.14 ± 0.07 |
2023–2020 | −19.54 ± 0.61 | −6.51 ± 0.50 | −7.55 ± 0.16 | - 0.19 ± 0.06 |
2023–2024 | −1.73 ± 0.36 | −1.73 ± 0.36 | 1.75 ± 0.24 | 1.75 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanto, J.; Pellitero, R.; Úbeda, J.; Atkinson-Gordo, A.D.J.; Pasapera, J. 69-Year Geodetic Mass Balance of Nevado Coropuna (Peru), the World’s Largest Tropical Icefield, from 1955 to 2024. Remote Sens. 2025, 17, 3344. https://doi.org/10.3390/rs17193344
Llanto J, Pellitero R, Úbeda J, Atkinson-Gordo ADJ, Pasapera J. 69-Year Geodetic Mass Balance of Nevado Coropuna (Peru), the World’s Largest Tropical Icefield, from 1955 to 2024. Remote Sensing. 2025; 17(19):3344. https://doi.org/10.3390/rs17193344
Chicago/Turabian StyleLlanto, Julian, Ramón Pellitero, Jose Úbeda, Alan D.J. Atkinson-Gordo, and José Pasapera. 2025. "69-Year Geodetic Mass Balance of Nevado Coropuna (Peru), the World’s Largest Tropical Icefield, from 1955 to 2024" Remote Sensing 17, no. 19: 3344. https://doi.org/10.3390/rs17193344
APA StyleLlanto, J., Pellitero, R., Úbeda, J., Atkinson-Gordo, A. D. J., & Pasapera, J. (2025). 69-Year Geodetic Mass Balance of Nevado Coropuna (Peru), the World’s Largest Tropical Icefield, from 1955 to 2024. Remote Sensing, 17(19), 3344. https://doi.org/10.3390/rs17193344