Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model
Abstract
Highlights
- The use of a 1D Bayesian method to retrieve and constrain water vapor from radar reflectivity for assimilation improves the balance between observations and the background field.
- The optimized assimilation scheme effectively corrects systematic positive biases in water vapor, reducing overforecasting, particularly within the first 6 h.
- The study provides a robust method for radar reflectivity data assimilation, offering a significant advancement in short-term precipitation forecasting.
- This approach to assimilation could serve as a model for other forecasting systems looking to integrate radar data effectively, potentially improving their predictive capabilities.
Abstract
1. Introduction
2. Data and Methods
2.1. Models and Data
2.2. Assimilation Method
2.3. Bayesian Retrieval of Water Vapor
3. Results
3.1. Innovation Vector
3.2. Impact of Data Assimilation on the Initial Field
3.3. Impact of Data Assimilation on Precipitation
4. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Migliorini, S.; Candy, B. All-sky satellite data assimilation of microwave temperature sounding channels at the Met Office. Q. J. R. Meteorol. Soc. 2019, 145, 867–883. [Google Scholar] [CrossRef]
- Navon, I.M. Data Assimilation for Numerical Weather Prediction: A Review. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications; Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–65. [Google Scholar]
- Yin, J.; Han, W.; Gao, Z.; Chen, H. Assimilation of Doppler radar radial wind data in the GRAPES mesoscale model with observation error covariances tuning. Q. J. R. Meteorol. Soc. 2021, 147, 2087–2102. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, C.; Gong, J. Physical initialization applied in WRF-Var for assimilation of Doppler radar data. Geophys. Res. Lett. 2006, 33, L22807. [Google Scholar] [CrossRef]
- Ducrocq, V.; Lapore, J.-P.; Redelsperger, J.-L.; Orain, F. Initialization of a fine-scale model for convective-system prediction: A case study. Q. J. R. Meteorol. Soc. 2000, 126, 3041–3065. [Google Scholar] [CrossRef]
- Gao, J.; Droegemeier, K. A Variational Technique for Dealiasing Doppler Radial Velocity Data. J. Appl. Meteor. Climatol. 2004, 43, 934–940. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N. Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part II: Retrieval Experiments of an Observed Florida Convective Storm. J. Atmos. Sci. 1998, 55, 835–852. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker, J. GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Dowell, D.C.; Wicker, L.J.; Snyder, C. Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses. Mon. Weather Rev. 2011, 139, 272–294. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, J.; Li, H.; Zhu, Y. Direct assimilation of simulated radar reflectivity for typhoon In-fa using EnKF: Issue with state variables updating. Trop. Cyclone Res. Rev. 2024, 13, 24–32. [Google Scholar]
- Tong, C.-C.; Xue, M.; Liu, C.; Luo, J.; Jung, Y. Development of Multiscale EnKF within GSI and Its Applications to Multiple Convective Storm Cases with Radar Reflectivity Data Assimilation Using the FV3 Limited-Area Model. Mon. Weather Rev. 2024, 152, 1839–1857. [Google Scholar] [CrossRef]
- Gao, J.; Fu, C.; Stensrud, D.J.; Kain, J.S. OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci. 2016, 73, 2403–2426. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Some Observing System Simulation Experiments with a Hybrid 3DEnVAR System for Storm-Scale Radar Data Assimilation. Mon. Weather Rev. 2014, 142, 3326–3346. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Skinner, P.S.; Knopfmeier, K.; Jones, T.; Creager, G.; Heiselman, P.L.; Wicker, L.J. Test of a Weather-Adaptive Dual-Resolution Hybrid Warn-on-Forecast Analysis and Forecast System for Several Severe Weather Events. Weather Forecast. 2019, 34, 1807–1827. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Fan, S.; Huang, X.-Y. Indirect Assimilation of Radar Reflectivity with WRF 3D-Var and Its Impact on Prediction of Four Summertime Convective Events. J. Appl. Meteorol. Climatol. 2013, 52, 889–902. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Caumont, O.; Ducrocq, V.; Wattrelot, É.; Jaubert, G.; Pradier-Vabre, S. 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus A 2010, 62, 173–187. [Google Scholar] [CrossRef]
- Wattrelot, E.; Caumont, O.; Mahfouf, J.-F. Operational Implementation of the 1D+3D-Var Assimilation Method of Radar Reflectivity Data in the AROME Model. Mon. Weather. Rev. 2014, 142, 1852–1873. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Wan, Q.; Lin, Z.; Huang, Y.; Dai, G.; Zhong, S.; Ding, W. Application experiment of assimilating radar-retrieved water vapor in short-range forecast of rainfall in the annually first rainy season over south China. J. Trop. Meteorol. 2014, 30, 801–810. [Google Scholar] [CrossRef]
- Lai, A.; Gao, J.; Koch, S.; Wang, Y.; Pan, S.; Fierro, A.; Cui, C.; Min, J. Assimilation of Radar Radial Velocity, Reflectivity, and Pseudo–Water Vapor for Convective-Scale NWP in a Variational Framework. Mon. Weather Rev. 2019, 147, 2877–2900. [Google Scholar] [CrossRef]
- Chen, H.; Gao, J.; Sun, T.; Chen, Y.; Wang, Y.; Carlin, J.T. Assimilation of Water Vapor Retrievals from ZDR Columns Using the 3DVar Method for Improving the Short-Term Convective Storms Predictions. Mon. Weather Rev. 2024, 152, 1077–1095. [Google Scholar] [CrossRef]
- Liu, P.; Yang, Y.; Lai, A.; Wang, Y.; Fierro, A.O.; Gao, J.; Wang, C. Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method. Remote Sens. 2021, 13, 3090. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Tong, W.; Zhang, Y.; Lin, C.-Y.; Xu, D. Comparison of the Impacts of Momentum Control Variables on High-Resolution Variational Data Assimilation and Precipitation Forecasting. Mon. Weather Rev. 2016, 144, 149–169. [Google Scholar] [CrossRef]
- Simonin, D.; Ballard, S.P.; Li, Z. Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for nowcasting. Q. J. R. Meteorol. Soc. 2014, 140, 2298–2314. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wicker, L.J. The Influence of Midtropospheric Dryness on Supercell Morphology and Evolution. Mon. Weather Rev. 1998, 126, 943–958. [Google Scholar] [CrossRef]
- Smith, P.L.; Myers, C.G.; Orville, H.D. Radar Reflectivity Factor Calculations in Numerical Cloud Models Using Bulk Parameterization of Precipitation. J. Appl. Meteorol. Climatol. 1975, 14, 1156–1165. [Google Scholar] [CrossRef]
- Fabry, F.; Sun, J. For How Long Should What Data Be Assimilated for the Mesoscale Forecasting of Convection and Why? Part I: On the Propagation of Initial Condition Errors and Their Implications for Data Assimilation. Mon. Weather Rev. 2010, 138, 242–255. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
Parameter | Model Configuration |
---|---|
Horizontal resolution | 1945 × 1498 |
Number of layers | 61 |
Top layer | 10 hPa |
Vertical Coordinate system | terrain-following vertical coordinate |
Area coverage | 13.5°–57.8°N, 60.5°–149.5°E |
Explicit microphysical scheme | Thompson |
Longwave radiation scheme | Rapid Radiative Transfer Model (RRTM) |
Shortwave radiation scheme | Rapid Radiative Transfer Model for General Circulation Models (RRTMG) |
Boundary layer scheme | Yonsei University scheme (YSU) |
Surface scheme | Noah land surface scheme |
Abbreviation | Experiment Name | Observation for First Step Assimilation | Observation for Second Step Assimilation |
---|---|---|---|
CTRL | Control experiment | Conventional observation data | Retrieved hydrometeors and estimated saturated water vapor from reflectivity |
NEW_QV | contrast experiment | Conventional observation data | Retrieved hydrometeors and retrieved water vapor via the 1D Bayesian method from reflectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Huang, X.-Y.; Lu, B.; Chen, M.; Sun, Y.; Zhu, Y.; Wang, C. Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model. Remote Sens. 2025, 17, 3320. https://doi.org/10.3390/rs17193320
Yin J, Huang X-Y, Lu B, Chen M, Sun Y, Zhu Y, Wang C. Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model. Remote Sensing. 2025; 17(19):3320. https://doi.org/10.3390/rs17193320
Chicago/Turabian StyleYin, Jian, Xiang-Yu Huang, Bing Lu, Min Chen, Yao Sun, Yijie Zhu, and Cheng Wang. 2025. "Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model" Remote Sensing 17, no. 19: 3320. https://doi.org/10.3390/rs17193320
APA StyleYin, J., Huang, X.-Y., Lu, B., Chen, M., Sun, Y., Zhu, Y., & Wang, C. (2025). Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model. Remote Sensing, 17(19), 3320. https://doi.org/10.3390/rs17193320