Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model
Abstract
Highlights
- AgriCarbon-EO is able to reproduce the spatio-temporal variations of biomass, CO2, and water fluxes of winter cover crop at a decametric resolution.
- The spatial variability of the above-ground biomass of cover crops was high both within and between plots in the study area over the five years studied.
- Cover crops contribute to increase the carbon inputs into the soil while having limited impact on water availability for the following crop.
- In South West France, cover crops represent a realistic option to increase soil organic carbon stocks under the current climatic conditions.
- The high spatial variability of cover crop development shows the importance of assimilating high resolution remote sensing data in a crop model to assess accurately their impact on soil carbon and water resources.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Main Features of the Processing Chain
2.3. Spatial Input Data for AgriCarbon-EO
2.3.1. Climatic Data
2.3.2. Optical Satellite Images
2.3.3. Land Cover Map
2.3.4. Soil Property Maps
2.4. In Situ Data Used for Calibration and Statistical Performance Evaluation
2.4.1. Daily Flux Measurements on Two Experimental Fields
2.4.2. Biomass Data Collected on a Network of Fields
2.5. Modeling Point Specific to This Study
2.5.1. Determination of the Available Water Content
2.5.2. Calibration Strategy for the Agrometeorological Model
2.5.3. Estimation of Soil Carbon Stock Changes Caused by Cover Crop
3. Results
3.1. Characterization of the Modeling Approach’s Performance
3.1.1. Assessment of the Model for the GLAI, and for the Components the Net CO2 Fluxes and Water Budgets
3.1.2. Assessment of the Spatio-Temporal Representativity of Cover Crop Biomass Simulations
3.2. Landscape-Scale Simulation for 2017–2021 Period
3.2.1. Ability of the Model to Reproduce High-Resolution Crop Spatio-Temporal Development Variability at Regional Scale
3.2.2. Regional Variability in the Timing of Cover Crop and Biomass Production
3.2.3. A Case Study at Farm Scale
4. Discussion
4.1. Performance Comparison with the Existing Literature
4.2. Limits Related to the AgriCarbon-EO Processing Chain
4.3. Limits Related to the Use of the Remote Sensing Data
5. Conclusions
Code Availability
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivière, C.; Béthinger, A.; Bergez, J.-E. The Effects of Cover Crops on Multiple Environmental Sustainability Indicators—A Review. Agronomy 2022, 12, 2011. [Google Scholar] [CrossRef]
- Du, X.; Jian, J.; Du, C.; Stewart, R.D. Conservation Management Decreases Surface Runoff and Soil Erosion. Int. Soil Water Conserv. Res. 2022, 10, 188–196. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover Crop Impacts on Soil Physical Properties: A Review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- Beyer, N.; Gabriel, D.; Kirsch, F.; Schulz-Kesting, K.; Dauber, J.; Westphal, C. Functional Groups of Wild Bees Respond Differently to Faba Bean Vicia faba L. Cultivation at Landscape Scale. J. Appl. Ecol. 2020, 57, 2499–2508. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Jean-Baptiste, B. Recherches Chimiques Sur La Vegetation, Entreprises Dans Le but d’examiner Si Les Plantes Prennent de l’azote à l’atmosphere. Ann. Chim. Phys. 1838, 67, 5–54. [Google Scholar]
- Köpke, U.; Nemecek, T. Ecological Services of Faba Bean. Field Crops Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Carrer, D.; Pique, G.; Ferlicoq, M.; Ceamanos, X.; Ceschia, E. What Is the Potential of Cropland Albedo Management in the Fight against Global Warming? A Case Study Based on the Use of Cover Crops. Environ. Res. Lett. 2018, 13, 044030. [Google Scholar] [CrossRef]
- Lugato, E.; Cescatti, A.; Jones, A.; Ceccherini, G.; Duveiller, G. Maximising Climate Mitigation Potential by Carbon and Radiative Agricultural Land Management with Cover Crops. Environ. Res. Lett. 2020, 15, 094075. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Minasny, B.; Arrouays, D.; Cardinael, R.; Chabbi, A.; Farrell, M.; Henry, B.; Koutika, L.-S.; Ladha, J.K.; McBratney, A.B.; Padarian, J.; et al. Current NPP Cannot Predict Future Soil Organic Carbon Sequestration Potential. Comment on “Photosynthetic Limits on Carbon Sequestration in Croplands.”. Geoderma 2022, 424, 115975. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.-L.; Torquebiau, E.; et al. Matching Policy and Science: Rationale for the ‘4 per 1000-Soils for Food Security and Climate’ Initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Selzer, T.; Schubert, S. Water Dynamics of Cover Crops: No Evidence for Relevant Water Input through Occult Precipitation. J. Agron. Crop Sci. 2023, 209, 422–437. [Google Scholar] [CrossRef]
- Nordblom, T.; Gurusinghe, S.; Erbacher, A.; Weston, L.A. Opportunities and Challenges for Cover Cropping in Sustainable Agriculture Systems in Southern Australia. Agriculture 2023, 13, 688. [Google Scholar] [CrossRef]
- Hanrahan, B.R.; King, K.W.; Duncan, E.W.; Shedekar, V.S. Cover Crops Differentially Influenced Nitrogen and Phosphorus Loss in Tile Drainage and Surface Runoff from Agricultural Fields in Ohio, USA. J. Environ. Manag. 2021, 293, 112910. [Google Scholar] [CrossRef]
- Muñoz-Ventura, A.; Christianson, R.D.; Bhattarai, R.; Christianson, L.E. Runoff and Drainage Trade-Offs from Cover Crops Exposed to Freeze–Thaw Events. Agrosyst. Geosci. Environ. 2022, 5, e20324. [Google Scholar] [CrossRef]
- Baker, J.M.; Griffis, T.J. Examining Strategies to Improve the Carbon Balance of Corn/Soybean Agriculture Using Eddy Covariance and Mass Balance Techniques. Agric. For. Meteorol. 2005, 128, 163–177. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. Do Cover Crops Enhance N2O, CO2 or CH4 Emissions from Soil in Mediterranean Arable Systems? Sci. Total Environ. 2014, 466–467, 164–174. [Google Scholar] [CrossRef]
- Tribouillois, H.; Constantin, J.; Casal, L.; Villerd, J.; Therond, O. Introducing and Expanding Cover Crops at the Watershed Scale: Impact on Water Flows. Agric. Ecosyst. Environ. 2022, 337, 108050. [Google Scholar] [CrossRef]
- Do Nascimento Bendini, H.; Fieuzal, R.; Carrere, P.; Clenet, H.; Galvani, A.; Allies, A.; Ceschia, É. Estimating Winter Cover Crop Biomass in France Using Optical Sentinel-2 Dense Image Time Series and Machine Learning. Remote Sens. 2024, 16, 834. [Google Scholar] [CrossRef]
- Breunig, F.M.; Dalagnol, R.; Galvão, L.S.; da Conceição Bispo, P.; Liu, Q.; Berra, E.F.; Gaida, W.; Liesenberg, V.; Sampaio, T.V.M. Monitoring Cover Crop Biomass in Southern Brazil Using Combined PlanetScope and Sentinel-1 SAR Data. Remote Sens. 2024, 16, 2686. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ceschia, E.; Heuvelink, G.B.M.; Demenois, J.; Le Maire, G.; Cardinael, R.; Arias-Navarro, C.; van Egmond, F.M. International Review of Current Mrv Initiatives for Soil Carbon Stock Change Assessment and Associated Methodologies; ISRIC: Wageningen, The Netherlands, 2023. [Google Scholar]
- Wijmer, T.; Al Bitar, A.; Arnaud, L.; Fieuzal, R.; Ceschia, E. AgriCarbon-EO v1.0.1: Large-Scale and High-Resolution Simulation of Carbon Fluxes by Assimilation of Sentinel-2 and Landsat-8 Reflectances Using a Bayesian Approach. Geosci. Model Dev. 2024, 17, 997–1021. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Upreti, D.; Pignatti, S.; Pascucci, S.; Tolomio, M.; Huang, W.; Casa, R. Bayesian Calibration of the Aquacrop-OS Model for Durum Wheat by Assimilation of Canopy Cover Retrieved from VENµS Satellite Data. Remote Sens. 2020, 12, 2666. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Brut, A.; Tallec, T.; Huc, M.; Cros, J.; Weber, J.-J.; Lhuissier, L.; Simonneaux, V.; Demarez, V. Modeling Water Needs and Total Irrigation Depths of Maize Crop in the South West of France Using High Spatial and Temporal Resolution Satellite Imagery. Agric. Water Manag. 2017, 189, 123–136. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Qi, Z. Remote Sensing Data Assimilation in Crop Growth Modeling from an Agricultural Perspective: New Insights on Challenges and Prospects. Agronomy 2024, 14, 1920. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M. Field-Level Crop Yield Mapping with Landsat Using a Hierarchical Data Assimilation Approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Pique, G.; Fieuzal, R.; Al Bitar, A.; Veloso, A.; Tallec, T.; Brut, A.; Ferlicoq, M.; Zawilski, B.; Dejoux, J.-F.; Gibrin, H.; et al. Estimation of Daily CO2 Fluxes and of the Components of the Carbon Budget for Winter Wheat by the Assimilation of Sentinel 2-like Remote Sensing Data into a Crop Model. Geoderma 2020, 376, 114428. [Google Scholar] [CrossRef]
- Pique, G.; Fieuzal, R.; Debaeke, P.; Al Bitar, A.; Tallec, T.; Ceschia, E. Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sens. 2020, 12, 2967. [Google Scholar] [CrossRef]
- Ouin, A.; Andrieu, E.; Vialatte, A.; Balent, G.; Barbaro, L.; Blanco, J.; Ceschia, E.; Clement, F.; Fauvel, M.; Gallai, N.; et al. Chapter Two—Building a Shared Vision of the Future for Multifunctional Agricultural Landscapes. Lessons from a Long Term Socio-Ecological Research Site in South-Western France. In Advances in Ecological Research; Bohan, D.A., Dumbrell, A.J., Vanbergen, A.J., Eds.; The Future of Agricultural Landscapes, Part III; Academic Press: Cambridge, MA, USA, 2021; Volume 65, pp. 57–106. [Google Scholar]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; de Dreuzy, J.R.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French Network of Critical Zone Observatories. Vadose Zone J. 2018, 17, 180067. [Google Scholar] [CrossRef]
- Franz, D.; Acosta, M.; Altimir, N.; Arriga, N.; Arrouays, D.; Aubinet, M.; Aurela, M.; Ayres, E.; López-Ballesteros, A.; Barbaste, M.; et al. Towards Long-Term Standardised Carbon and Greenhouse Gas Observations for Monitoring Europe’s Terrestrial Ecosystems: A Review. Int. Agrophysics 2018, 32, 439–455. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Prosperi, P.; Terres, J.M.; Doublet, S.; Pointereau, P. Conservation Agriculture Effects and Policy Support to Mitigate Soil Degradation in Midi-Pyrénées (France). Land Degrad. Dev. 2011, 22, 70–83. [Google Scholar] [CrossRef]
- Bonsoms, J.; López-Moreno, J.I.; Alonso-González, E. Snow Sensitivity to Temperature and Precipitation Change during Compound Cold–Hot and Wet–Dry Seasons in the Pyrenees. Cryosphere 2023, 17, 1307–1326. [Google Scholar] [CrossRef]
- Lhuissier, L.; Lamblin, V.; Sauquet, E.; Arama, Y.; Goulard, F.; Strosser, P. Retour Sur l’étude Prospective Garonne 2050. La Houille Blanche 2016, 102, 30–35. [Google Scholar] [CrossRef]
- Brasier, K.; Zaragoza, I.; Knecht, J.; Munster, R.; Coulter, H.; Potter, A.; Enke, E.; Fox, A.; Mosqueda, E.; Zakeri, H. Potential of Faba Bean (Vicia faba L.) for Dual-Purpose Vegetable Production and Cover Cropping. HortScience 2023, 58, 23–31. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Wang, J.; Lopez-Lozano, R.; Weiss, M.; Buis, S.; Li, W.; Liu, S.; Baret, F.; Zhang, J. Crop Specific Inversion of PROSAIL to Retrieve Green Area Index (GAI) from Several Decametric Satellites Using a Bayesian Framework. Remote Sens. Environ. 2022, 278, 113085. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Rouquié, B.; Hagolle, O.; Bréon, F.-M.; Boucher, O.; Desjardins, C.; Rémy, S. Using Copernicus Atmosphere Monitoring Service Products to Constrain the Aerosol Type in the Atmospheric Correction Processor MAJA. Remote Sens. 2017, 9, 1230. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Glob. Change Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Béziat, P. Effets Des Conditions Environnementales et Des Pratiques Culturales Sur Les Flux de Carbone et d’eau Dans Les Agrosystèmes. Ph.D. Thesis, Université Toulouse III-Paul Sabatier, Toulouse, France, 2009. [Google Scholar]
- Clement, R. EdiRe Data Software; The University of Edinburgh: Edinburgh, Scotland, 1999. [Google Scholar]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Román Dobarco, M.; Bourennane, H.; Arrouays, D.; Saby, N.P.A.; Cousin, I.; Martin, M.P. Uncertainty Assessment of GlobalSoilMap Soil Available Water Capacity Products: A French Case Study. Geoderma 2019, 344, 14–30. [Google Scholar] [CrossRef]
- Clivot, H.; Duparque, A.; Ferchaud, F.; Lagrange, H.; Levavasseur, F.; Levert, M.; Marsac, S.; Mary, B.; Mouny, J.-C.; Piquemal, B.; et al. AMGv2 Parameters; 2023. Available online: https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/MEQQIX (accessed on 3 September 2025).
- Clivot, H.; Mouny, J.-C.; Duparque, A.; Dinh, J.-L.; Denoroy, P.; Houot, S.; Vertès, F.; Trochard, R.; Bouthier, A.; Sagot, S.; et al. Modeling Soil Organic Carbon Evolution in Long-Term Arable Experiments with AMG Model. Environ. Model. Softw. 2019, 118, 99–113. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S. RothC-26.3—A Model for the Turnover of Carbon in Soil. In Evaluation of Soil Organic Matter Models; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–246. [Google Scholar]
- Kelly, R.H.; Parton, W.J.; Crocker, G.J.; Graced, P.R.; Klír, J.; Körschens, M.; Poulton, P.R.; Richter, D.D. Simulating Trends in Soil Organic Carbon in Long-Term Experiments Using the Century Model. Geoderma 1997, 81, 75–90. [Google Scholar] [CrossRef]
- Zeleke, K.T. AquaCrop Calibration and Validation for Faba Bean (Vicia faba L.) under Different Agronomic Managements. Agronomy 2019, 9, 320. [Google Scholar] [CrossRef]
- Dhouib, M.; Zitouna-Chebbi, R.; Prévot, L.; Molénat, J.; Mekki, I.; Jacob, F. Multicriteria Evaluation of the AquaCrop Crop Model in a Hilly Rainfed Mediterranean Agrosystem. Agric. Water Manag. 2022, 273, 107912. [Google Scholar] [CrossRef]
- Falconnier, G.N.; Journet, E.-P.; Bedoussac, L.; Vermue, A.; Chlébowski, F.; Beaudoin, N.; Justes, E. Calibration and Evaluation of the STICS Soil-Crop Model for Faba Bean to Explain Variability in Yield and N2 Fixation. Eur. J. Agron. 2019, 104, 63–77. [Google Scholar] [CrossRef]
- Berghuijs, H.N.C.; Weih, M.; van der Werf, W.; Karley, A.J.; Adam, E.; Villegas-Fernández, Á.M.; Kiær, L.P.; Newton, A.C.; Scherber, C.; Tavoletti, S.; et al. Calibrating and Testing APSIM for Wheat-Faba Bean Pure Cultures and Intercrops across Europe. Field Crops Res. 2021, 264, 108088. [Google Scholar] [CrossRef]
- Dias, H.B.; Cuadra, S.V.; Boote, K.J.; Lamparelli, R.A.C.; Figueiredo, G.K.D.A.; Suyker, A.E.; Magalhães, P.S.G.; Hoogenboom, G. Coupling the CSM-CROPGRO-Soybean Crop Model with the ECOSMOS Ecosystem Model—An Evaluation with Data from an AmeriFlux Site. Agric. For. Meteorol. 2023, 342, 109697. [Google Scholar] [CrossRef]
- Raimondi, G.; Maucieri, C.; Borin, M.; Pancorbo, J.L.; Cabrera, M.; Quemada, M. Satellite Imagery and Modeling Contribute Understanding Cover Crop Effect on Nitrogen Dynamics and Water Availability. Agron. Sustain. Dev. 2023, 43, 66. [Google Scholar] [CrossRef]
- Ye, L.; Guan, K.; Qin, Z.; Wang, S.; Zhou, W.; Peng, B.; Grant, R.; Tang, J.; Hu, T.; Jin, Z.; et al. Improved Quantification of Cover Crop Biomass and Ecosystem Services through Remote Sensing-Based Model–Data Fusion. Environ. Res. Lett. 2023, 18, 094018. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Jiang, C.; Zhou, Q.; Li, K.; Qin, Z.; Ainsworth, E.A.; He, J.; Wu, J.; et al. Airborne Hyperspectral Imaging of Cover Crops through Radiative Transfer Process-Guided Machine Learning. Remote Sens. Environ. 2023, 285, 113386. [Google Scholar] [CrossRef]
- Delogu, E.; Le Dantec, V.; Mordelet, P.; Ceschia, E.; Aubinet, M.; Buysse, P.; Pattey, E. Improved Methodology to Quantify the Temperature Sensitivity of the Soil Heterotrophic Respiration in Croplands. Geoderma 2017, 296, 18–29. [Google Scholar] [CrossRef][Green Version]
- Löhnis, F. Nitrogen Availability of Green Manures. Soil Sci. 1926, 22, 253. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of Mechanisms and Quantification of Priming Effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; Serbin, G.; Galbraith, J.M. Remote Sensing of Crop Residue and Tillage Practices: Present Capabilities and Future Prospects. Soil Tillage Res. 2014, 138, 26–34. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; P. D. Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; R. Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Zhang, L.; Pu, Y.; Yang, C.; Wu, Q.; Cai, Y.; Shen, F.; Zhou, C. A Review on Digital Mapping of Soil Carbon in Cropland: Progress, Challenge, and Prospect. Environ. Res. Lett. 2022, 17, 123004. [Google Scholar] [CrossRef]
- Caubel, J.; Launay, M.; Ripoche, D.; Gouache, D.; Buis, S.; Huard, F.; Huber, L.; Brun, F.; Bancal, M.O. Climate Change Effects on Leaf Rust of Wheat: Implementing a Coupled Crop-Disease Model in a French Regional Application. Eur. J. Agron. 2017, 90, 53–66. [Google Scholar] [CrossRef]
- Caubel, J.; Launay, M.; Lannou, C.; Brisson, N. Generic Response Functions to Simulate Climate-Based Processes in Models for the Development of Airborne Fungal Crop Pathogens. Ecol. Model. 2012, 242, 92–104. [Google Scholar] [CrossRef]
- Justes, E.; Beaudoin, N.; Bertuzzi, P.; Charles, R.; Constantin, J.; Durr, C.; Hermon, C.; Joannon, A.; Bas, C.L.; Mary, B.; et al. Réduire Les Fuites de Nitrate Au Moyen de Cultures Intermédiaires: Conséquences Sur Les Bilans d’eau et d’azote, Autres Services Écosystémiques. Ph.D. Thesis, Ministère de l’Ecologie, du Développement Durable et de l’Energie, Paris, France, 2012. [Google Scholar]
- Fendrich, A.N.; Matthews, F.; Van Eynde, E.; Carozzi, M.; Li, Z.; d’Andrimont, R.; Lugato, E.; Martin, P.; Ciais, P.; Panagos, P. From Regional to Parcel Scale: A High-Resolution Map of Cover Crops across Europe Combining Satellite Data with Statistical Surveys. Sci. Total Environ. 2023, 873, 162300. [Google Scholar] [CrossRef]
- Nowak, B.; Michaud, A.; Marliac, G. Soil-Climate Factors Have a Greater Influence on the Presence of Winter Cover Crops than Regulatory Constraints in France. Agron. Sustain. Dev. 2022, 42, 28. [Google Scholar] [CrossRef]
- Jain, K.; John, R.; Torbick, N.; Kolluru, V.; Saraf, S.; Chandel, A.; Henebry, G.M.; Jarchow, M. Monitoring the Spatial Distribution of Cover Crops and Tillage Practices Using Machine Learning and Environmental Drivers across Eastern South Dakota. Environ. Manag. 2024, 74, 742–756. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation. EARSeL Adv. Remote Sens. 2013, 2, 162–180. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F. Estimation of Leaf Area Index and Crop Height of Sunflowers Using Multi-Temporal Optical and SAR Satellite Data. Int. J. Remote Sens. 2016, 37, 2780–2809. [Google Scholar] [CrossRef]
- Baup, F.; Villa, L.; Fieuzal, R.; Ameline, M. Sensitivity of X-Band (Σ°, γ) and Optical (NDVI) Satellite Data to Corn Biophysical Parameters. EARSeL Adv. Remote Sens. 2016, 5, 103–117. [Google Scholar] [CrossRef]
- Allies, A.; Roumiguié, A.; Dejoux, J.-F.; Fieuzal, R.; Jacquin, A.; Veloso, A.; Champolivier, L.; Baup, F. Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 7268–7283. [Google Scholar] [CrossRef]
- Fieuzal, R.; Marais Sicre, C.; Baup, F. Estimation of Sunflower Yield Using a Simplified Agrometeorological Model Controlled by Optical and SAR Satellite Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5412–5422. [Google Scholar] [CrossRef]
- Baup, F.; Ameline, M.; Fieuzal, R.; Frappart, F.; Corgne, S.; Berthoumieu, J.-F. Temporal Evolution of Corn Mass Production Based on Agro-Meteorological Modelling Controlled by Satellite Optical and SAR Images. Remote Sens. 2019, 11, 1978. [Google Scholar] [CrossRef]
- Allies, A.; Roumiguie, A.; Fieuzal, R.; Dejoux, J.-F.; Jacquin, A.; Veloso, A.; Champolivier, L.; Baup, F. Assimilation of Multisensor Optical and Multiorbital SAR Satellite Data in a Simplified Agrometeorological Model for Rapeseed Crops Monitoring. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 1123–1138. [Google Scholar] [CrossRef]
- Ameline, M.; Fieuzal, R.; Betbeder, J.; Berthoumieu, J.-F.; Baup, F. Estimation of Corn Yield by Assimilating SAR and Optical Time Series Into a Simplified Agro-Meteorological Model: From Diagnostic to Forecast. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 4747–4760. [Google Scholar] [CrossRef]
- Betbeder, J.; Fieuzal, R.; Baup, F. Assimilation of LAI and Dry Biomass Data From Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2540–2553. [Google Scholar] [CrossRef]
Sites | Variables | Cover Crop Period | Fallow Period | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | Bias | R2 | RMSE | Bias | ||
AUR | GLA | 0.98 | 0.21 | 0.01 | 0.99 | 0.03 | NR |
NEE | 0.66 | 1.19 | −0.33 | 0.63 | 1.51 | −0.63 | |
GPP | 0.78 | 1.45 | −0.39 | 0.79 | 1.26 | −0.12 | |
Reco | 0.75 | 0.53 | 0.06 | 0.24 | 1.12 | −0.5 | |
ETR | 0.76 | 0.4 | 0.1 | 0.26 | 1.15 | 0.2 | |
SWC0–30cm | 0.81 | 0.01 | 0.05 | 0.74 | 0.06 | 0.01 | |
PIB | GLA | 0.76 | 0.16 | 0.01 | 0.69 | NR | NR |
NEE | 0.42 | 1.04 | 0.01 | 0.57 | 0.97 | −0.55 | |
GPP | 0.56 | 1.09 | 0.21 | 0.58 | 0.87 | 0.32 | |
Reco | 0.27 | 0.73 | −19 | 0.1 | 1.38 | 0.87 | |
ETR | 0.54 | 0.63 | 0.16 | 0.42 | 0.87 | 0.1 | |
SWC0–30cm | 0.58 | 0.03 | 0.0 | 0.82 | 0.04 | 0.01 |
Months | nb | Mean | Std | R2 | RMSE | Bias |
---|---|---|---|---|---|---|
December | 3 | 80.23 | 21.10 | 0.99 | 12.08 | 9.71 |
January | 28 | 94.27 | 58.01 | 0.77 | 45.28 | 28.40 |
February | 48 | 155.07 | 105.31 | 0.71 | 63.90 | 1.16 |
March | 78 | 283.80 | 162.85 | 0.61 | 110.99 | 8.00 |
April | 10 | 239.73 | 164.02 | 0.78 | 160.73 | 85.67 |
Total | 167 | 208.73 | 154.17 | 0.71 | 93.93 | 14.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijmer, T.; Fieuzal, R.; Dejoux, J.F.; Al Bitar, A.; Tallec, T.; Ceschia, E. Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model. Remote Sens. 2025, 17, 3290. https://doi.org/10.3390/rs17193290
Wijmer T, Fieuzal R, Dejoux JF, Al Bitar A, Tallec T, Ceschia E. Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model. Remote Sensing. 2025; 17(19):3290. https://doi.org/10.3390/rs17193290
Chicago/Turabian StyleWijmer, Taeken, Rémy Fieuzal, Jean François Dejoux, Ahmad Al Bitar, Tiphaine Tallec, and Eric Ceschia. 2025. "Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model" Remote Sensing 17, no. 19: 3290. https://doi.org/10.3390/rs17193290
APA StyleWijmer, T., Fieuzal, R., Dejoux, J. F., Al Bitar, A., Tallec, T., & Ceschia, E. (2025). Carbon Benefits and Water Costs of Cover Crops by Assimilating Sentinel-2 and Landsat-8 Images in a Crop Model. Remote Sensing, 17(19), 3290. https://doi.org/10.3390/rs17193290