A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages
Abstract
Highlights
- Hyperspectral analysis across 29 olive cultivars, at different fruit ripening stages, revealed characteristic maturation-related reflectance patterns, including a distinctive peak at ~550 nm during early ripening that shifts to the 700–780 nm range in intermediate and advanced stages, with a plateau phase at 800–950 nm across all samples.
- A hyperspectral data analysis method, Biologically Informed Wavelength Extraction (BIWE), involving raw spectral data, related derivates and vegetation indices, has been developed, calibrated, validated and benchmarked in comparison to methodologies (Random Forest, Recursive Feature Elimination with Support Vector Machine, Principal Component Analysis) widely applied in spectral data analysis.
- BIWE introduced a novel approach for parsimonious hyperspectral feature selection through the integration of multi-scale spectral analysis with biologically-informed scoring, achieving competitive classification accuracy while significantly reducing the required wavelength dataset to 25 bands compared to conventional methodologies. The BIWE method overpasses the black-box, and merely statistical approach of the conventional methodologies.
- The significant reduction in required bands dataset directly impacts technological requirements for sensor design and enables practical real-time classification applications for olive cultivar and ripening stage discrimination.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Olive Sampling
2.2. Instrumentation
2.3. Wavelength Selection Methodologies in Hyperspectral Analysis for Olive Classification
2.3.1. Biologically Informed Wavelength Extraction (BIWE)
Leave-One-Cultivar-Out Cross-Validation for BIWE Feature Validation
- Maximum priority (1.00): Red-edge region (680–780 nm)—critical for photosystem degradation detection.
- High priority (0.95): Chlorophyll absorption bands (400–500 nm, 640–680 nm), carotenoid regions (500–550 nm), and water absorption bands (940–980 nm)—directly linked to maturation processes.
- Moderate priority (0.75): Near-infrared structural regions (780–900 nm)—reflecting cell wall modifications.
- Default priority (0.50): All other spectral regions with limited biochemical significance.
- Cultivar discrimination power (25%): Coefficient of variation across cultivars.
- Detection reliability (20%): Frequency of feature detection across samples.
- Stage consistency (20%): Temporal stability calculated as 1 − (σ/μ) across M1–M4 ripening stages.
- Balanced discrimination (15%): Shannon diversity index ensuring equal representation.
- Biological relevance (15%): Integration of physiological scoring system.
- Multi-scale consensus (5%): Agreement across fine, medium, and broad detection scales.
- Enhanced Quality Score > 50th percentile (ensure selection of above-median performing features, representing the upper half of the discriminatory performance distribution).
- Weighted Detection Rate > 0.1 (assumed as the minimum detection frequency necessary for robust cross-validation performance).
- Weighted Bio Score > 0.4 (ensuring selection of bands from spectral regions with assigned biological relevance above the default baseline score (Default priority 0.5), effectively limiting wavelengths from biochemically non-informative spectral regions).
2.3.2. Random Forest
2.3.3. Recursive Feature Elimination with Support Vector Machine
2.3.4. Principal Component Analysis
2.4. Wavelength Selection Methodologies Comparative Analysis
3. Results
3.1. Spectral Characteristics of Different Maturation Stages
3.2. Wavelength Selection Methodologies in Hyperspectral Analysis for Olive Classification
3.2.1. Biologically Informed Wavelength Extraction
3.2.2. Random Forest Feature Selection
3.2.3. Recursive Feature Elimination with Support Vector Machine
3.2.4. Principal Component Analysis
3.3. Wavelength Selection Methodologies Comparative Analysis
3.4. LOO-CV Analysis on Drupes Classification with BIWE Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VIs | Vegetation Indices |
VIS | Visible |
NIR | Near-Infrared |
PCA | Principal Component Analysis |
RFE | Recursive Feature Elimination |
LOO-CV | Leave-One-Out Cross-Validation |
RF | Random Forest |
BIWE | Biologically Informed Wavelength Extraction (BIWE) |
RFE-SVM | Recursive Feature Elimination with Support Vector Machines |
OOB | Out-of-Bag |
nm | Nanometer |
References
- Avola, G.; Matese, A.; Riggi, E. An overview of the special issue on “precision agriculture using hyperspectral images”. Remote Sens. 2023, 15, 1917. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Pu, H.; Sun, D.W.; Gao, W.; Xiong, Z. Use of hyperspectral imaging to discriminate the variety and quality of rice. Food Anal. Methods 2015, 8, 515–523. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Avola, G.; Di Gennaro, S.F.; Cantini, C.; Riggi, E.; Muratore, F.; Tornambè, C.; Matese, A. Remotely sensed vegetation indices to discriminate field-grown olive cultivars. Remote Sens. 2019, 11, 1242. [Google Scholar] [CrossRef]
- Liu, N.; Townsend, P.A.; Naber, M.R.; Bethke, P.C.; Hills, W.B.; Wang, Y. Hyperspectral imagery to monitor crop nutrient status within and across growing seasons. Remote Sens. Environ. 2021, 255, 112303. [Google Scholar] [CrossRef]
- Kaushik, M.; Nidamanuri, R.R.; Aparna, B. Hyperspectral discrimination of vegetable crops grown under organic and conventional cultivation practices: A machine learning approach. Sci. Rep. 2025, 15, 7897. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Shuai, L.; Li, Z.; Chen, Z.; Luo, D.; Mu, J. A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing. Comput. Electron. Agric. 2024, 217, 108577. [Google Scholar] [CrossRef]
- Bruce, L.M.; Koger, C.H.; Li, J. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [Google Scholar] [CrossRef]
- Morales, G.; Sheppard, J.W.; Logan, R.D.; Shaw, J.A. Hyperspectral dimensionality reduction based on inter-band redundancy analysis and greedy spectral selection. Remote Sens. 2021, 13, 3649. [Google Scholar] [CrossRef]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Sveinsson, J.R.; Amason, K. Classification and feature extraction of AVIRIS data. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1194–1205. [Google Scholar] [CrossRef]
- Al-Shalabi, L. New feature selection algorithm based on feature stability and correlation. IEEE Access 2022, 10, 4699–4713. [Google Scholar] [CrossRef]
- Bajcsy, P.; Groves, P. Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sens. 2004, 70, 793–802. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
- Nwokoma, F.; Foreman, J.; Akujuobi, C.M. Effective data reduction using discriminative feature selection based on principal component analysis. Mach. Learn. Knowl. Extr. 2024, 6, 789–799. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef]
- Spetale, F.E.; Bulacio, P.; Guillaume, S.; Murillo, J.; Tapia, E. A spectral envelope approach towards effective SVM-RFE on infrared data. Pattern Recognit. Lett. 2016, 71, 59–65. [Google Scholar] [CrossRef]
- Rajeswari, S.; Suthendran, K. Feature Selection Method based on Fisher’s Exact Test for Agricultural Data. Int. J. Recent Technol. Eng. 2019, 8, 558–564. [Google Scholar] [CrossRef]
- Joy, A.A.; Hasan, M.A.M.; Hossain, M.A. A comparison of supervised and unsupervised dimension reduction methods for hyperspectral image classification. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Burkart, N.; Huber, M.F. A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 2021, 70, 245–317. [Google Scholar] [CrossRef]
- Lipton, Z.C. The Mythos of Model Interpretability. arXiv 2017, arXiv:1606.03490. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Linear Regression. In An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; pp. 59–126. [Google Scholar] [CrossRef]
- König, G.; Günther, E.; von Luxburg, U. Disentangling interactions and dependencies in feature attribution. arXiv 2024, arXiv:2410.23772. [Google Scholar] [CrossRef]
- Molnar, C.; König, G.; Bischl, B.; Casalicchio, G. Model-agnostic feature importance and effects with dependent features: A conditional subgroup approach. Data Min. Knowl. Discov. 2024, 38, 2903–2941. [Google Scholar] [CrossRef]
- Goldwasser, J.; Hooker, G. Statistical Significance of Feature Importance Rankings. In Proceedings of the 41st Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 25–28 July 2024. [Google Scholar]
- Salimi, A.; Ziaii, M.; Amiri, A.; Zadeh, M.H.; Karimpouli, S.; Moradkhani, M. Using a Feature Subset Selection method and Support Vector Machine to address curse of dimensionality and redundancy in Hyperion hyperspectral data classification. Egypt. J. Remote Sens. Space Sci. 2018, 21, 27–36. [Google Scholar] [CrossRef]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise reduction in hyperspectral imagery: Overview and application. Rem. Sens. 2018, 10, 482. [Google Scholar] [CrossRef]
- Molnar, C.; König, G.; Herbinger, J.; Freiesleben, T.; Dandl, S.; Scholbeck, C.A.; Casalicchio, G.; Grosse-Wentrup, M.; Bischl, B. General pitfalls of model-agnostic interpretation methods for machine learning models. In International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers; Springer International Publishing: Cham, Switzerland, 2020; pp. 39–68. [Google Scholar] [CrossRef]
- Dashti, A.; Müller-Maatsch, J.; Roetgerink, E.; Wijtten, M.; Weesepoel, Y.; Parastar, H.; Yazdanpanah, H. Comparison of a portable Vis-NIR hyperspectral imaging and a snapscan SWIR hyperspectral imaging for evaluation of meat authenticity. Food Chem. 2023, 18, 100667. [Google Scholar] [CrossRef] [PubMed]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Tallada, J.G.; Bato, P.M.; Shrestha, B.P.; Kobayashi, T.; Nagata, M. Quality evaluation of plant products. In Hyperspectral Imaging Technology in Food and Agriculture, 1st ed.; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 240–241. [Google Scholar] [CrossRef]
- Wei, X.; Liu, F.; Qiu, Z.; Shao, Y.; He, Y. Ripeness classification of astringent persimmon using hyperspectral imaging technique. Food Bioprocess Technol. 2014, 7, 1371–1380. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.; Liu, F.; Kong, W.; He, Y.; Lou, B. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 2016, 179, 11–18. [Google Scholar] [CrossRef]
- Fatchurrahman, D.; Nosrati, M.; Amodio, M.L.; Chaudhry, M.M.A.; de Chiara, M.L.V.; Mastrandrea, L.; Colelli, G. Comparison Performance of Visible-NIR and Near-Infrared Hyperspectral Imaging for Prediction of Nutritional Quality of Goji Berry (Lycium barbarum L.). Foods 2021, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Gomes, L.; Nobre, T.; Sousa, A.; Rei, F.; Guiomar, N. Hyperspectral reflectance as a basis to discriminate olive varieties—A tool for sustainable crop management. Sustainability 2020, 12, 3059. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Di Virgilio, F.; Belloni, P.; Bonoli-Carbognin, M.; Lercker, G. Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007, 30, 424–437. [Google Scholar] [CrossRef]
- Gouvinhas, I.; De Almeida, J.M.; Carvalho, T.; Machado, N.; Barros, A.I. Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 2015, 174, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Gyftokostas, N.; Nanou, E.; Stefas, D.; Kokkinos, V.; Bouras, C.; Couris, S. Classification of Greek Olive Oils from Different Regions by Machine Learning-Aided Laser-Induced Breakdown Spectroscopy and Absorption Spectroscopy. Molecules 2021, 26, 1241. [Google Scholar] [CrossRef]
- Kruzlicova, D.; Mocak, J.; Katsoyannos, E.; Lankmayr, E. Classification and characterization of olive oils by UV-vis absorption spectrometry and sensorial analysis. J. Food Nutr. Res. 2008, 47, 181–188. [Google Scholar]
- Alamprese, C.; Grassi, S.; Tugnolo, A.; Casiraghi, E. Prediction of olive ripening degree combining image analysis and FT-NIR spectroscopy for virgin olive oil optimisation. Food Control 2021, 123, 107755. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zhang, J.S. Out-of-bag estimation of the optimal hyperparameter in SubBag ensemble method. Commun. Stat. Simul. Comput. 2010, 39, 1877–1892. [Google Scholar] [CrossRef]
- Samb, M.L.; Camara, F.; Ndiaye, S.; Slimani, Y.; Esseghir, M.A. A novel RFE-SVM-based feature selection approach for classification. Int. J. Adv. Sci. Technol. 2012, 43, 27–36. [Google Scholar]
- Song, S.; Gong, W.; Zhu, B.; Huang, X. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogramm. Remote Sens. 2011, 66, 672–682. [Google Scholar] [CrossRef]
- Merton, R. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998; pp. 12–16. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in 3 Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehe, J.A. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Peñuelas, J.; Baret, F.; Filella, I. Semi-imperical indices to assess carotenoids/chlorophyll, a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indexes associated with physiological-changes in nitrogen-limited and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhang, Y.H.; Han, Z.M.; Liu, X.Y.; Jian, Y.F.; Hu, C.G.; Dian, Y.Y. Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sens. 2021, 13, 2160. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (r900/r970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Datt, B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int. J. Remote Sens. 1999, 20, 2741–2759. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Thomas, J.; Gausman, H. Leaf reflectance vs. Leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 1977, 69, 799–802. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Kuzudisli, C.; Bakir-Gungor, B.; Bulut, N.; Qaqish, B.; Yousef, M. Review of feature selection approaches based on grouping of features. PeerJ 2023, 11, e15666. [Google Scholar] [CrossRef]
- Fei, S.; Li, L.; Han, Z.; Chen, Z.; Xiao, Y. Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield. Plant Methods 2022, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Zahidi, U.A.; Łukasik, K.; Cielniak, G. Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging. arXiv 2024, arXiv:2405.09955. [Google Scholar] [CrossRef]
- Doktor, D.; Lausch, A.; Spengler, D.; Thurner, M. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods. Remote Sens. 2014, 6, 12247–12274. [Google Scholar] [CrossRef]
No. | Cultivar | Origin/Diffusion | Use |
---|---|---|---|
1 | Bella di Spagna | Apulia (Italy) | Fresh consumption |
2 | Bianchera | Friuli-Venezia G. (Italy) | Oil |
3 | Carboncella | Abruzzo (Italy) | Oil/Fresh consumption |
4 | Coratina | Apulia (Italy) | Oil |
5 | Dolce d’Andria | Umbria (Italy) | Oil/Fresh consumption |
6 | Farga | Valencia (Spain) | Oil |
7 | Frantoio | Tuscany (Italy) | Oil |
8 | II82 | Umbria (Italy) | Oil |
9 | Intosso | Abruzzi (Italy) | Oil/Fresh consumption |
10 | Leccino | Tuscany (Italy) | Oil |
11 | Leccio del Corno | Tuscany (Italy) | Oil |
12 | Marzio | Tuscany (Italy) | Oil |
13 | Maurino | Tuscany (Italy) | Oil |
14 | Morchiaio | Tuscany (Italy) | Oil |
15 | Niedda | Sardinia (Italy) | Oil/Fresh consumption |
16 | Oblica | Croatia | Oil |
17 | Oblonga | USA | Oil |
18 | Oliva Rossa | Apulia (Italy) | Oil |
19 | Piangente | Tuscany (Italy) | Oil |
20 | Picholine | France | Oil/Fresh consumption |
21 | Raccioppella | Campania (Italy) | Oil/Fresh consumption |
22 | Razza | Lombardy (Italy) | Oil |
23 | Roggianella | Sardinia (Italy) | Oil/Fresh consumption |
24 | Rossellino | Tuscany (Italy) | Oil |
25 | Salegna | Molise (Italy) | Oil |
26 | Sargano di Fermo | Abruzzi (Italy) | Oil/Fresh consumption |
27 | Sari Hasebi | Türkiye | Oil |
28 | XVII87 | Tuscany (Italy) | Oil |
29 | XXXVI | Tuscany (Italy) | Oil |
Ripening Stage | Olive Skin Color |
---|---|
M1 | 100% green |
M2 | small reddish spots (<50% turning red, purple, or black) |
M3 | turning color (>50% turning red, purple, or black) |
M4 | 100% purple or black |
Name | Simple Indices | Normalize Difference Indices | Others | Comments/Application | Reference |
---|---|---|---|---|---|
Normalized Difference Vegetation Index (NDVI) | chlorophyll content | [48] | |||
Photochemical Reflectance Index (PRI) | efficiency of radiation and photosynthetic capacity | [49] | |||
Gitelson and Merzlyak chlorophyll 1 (GM1) Gitelson and Merzlyak chlorophyll 1 (GM1) | chlorophyll content | [50] | |||
Lichtenthaler Indices (LC1) Lichtenthaler Indices (LC2) Lichtenthaler Indices (LC3) | | chlorophyll content | [51] | ||
Simple Ratio Pigment Index (SRPI) | fruit senescence; carotenoids and chlorophyll content | [52] | |||
Normalized Pigment Chlorophyll Ratio Index (NPCI) | fruit senescence; pigments and chlorophyll content | [53] | |||
Greenness Index (GI) | chlorophyll content | [54] | |||
Structure Intensive Pigment Index (SIPI) | fruit senescence; carotenoids and chlorophyll content | [55] | |||
Simple Ratio (SR) | chlorophyll content | [56] | |||
Water Index (WI) | water status | [57] | |||
Leaf Chlorophyll Index (LCI) | chlorophyll content | [58] | |||
Chlorophyll Index_2 (SGB2) | chlorophyll content | [59] | |||
Chlorophyll Index_3 (SGB2) | chlorophyll content | [60] | |||
R550 | % reflectance at 550 nm | chlorophyll content | [60] | ||
R650 | % reflectance at 650 nm | chlorophyll content | [60] |
Wavelength | Derivative Type | Discriminatory Score | Quality Score | Weighted Detection Rate |
---|---|---|---|---|
680 | D2—peak | 3.02 | 4.78 | 12.70 |
695 | D1—peak | 2.62 | 4.42 | 10.60 |
705 | D2—valley | 2.52 | 4.28 | 10.10 |
950 | D1—valley | 2.40 | 2.35 | 9.80 |
655 | D1—valley | 2.36 | 3.54 | 9.34 |
515 | D1—peak | 2.36 | 3.89 | 9.33 |
970 | D2—peak | 2.16 | 2.08 | 8.59 |
710 | D2—valley | 2.02 | 3.57 | 7.73 |
550 | Raw peak | 1.99 | 3.11 | 7.60 |
650 | D1—valley | 1.80 | 2.85 | 6.55 |
700 | D1—peak | 1.78 | 2.72 | 6.62 |
690 | D1—peak | 1.69 | 2.26 | 6.11 |
495 | D2—peak | 1.69 | 2.71 | 5.95 |
810 | Raw peak | 1.66 | 2.20 | 5.84 |
500 | D2—peak | 1.64 | 2.67 | 5.77 |
675 | D2—peak | 1.62 | 1.84 | 5.99 |
510 | D1—peak | 1.61 | 1.81 | 5.74 |
530 | D2—valley | 1.53 | 2.41 | 5.21 |
555 | Raw peak | 1.48 | 1.14 | 5.03 |
650 | D2—valley | 1.42 | 2.06 | 4.71 |
660 | D1—valley | 1.41 | 1.45 | 4.82 |
575 | D1—valley | 1.41 | 1.25 | 5.01 |
685 | D2—peak | 1.37 | 1.98 | 4.77 |
815 | Raw peak | 1.28 | 1.49 | 3.98 |
720 | D2—valley | 1.23 | 2.03 | 3.12 |
Models | Features | Bulk M1–M4 | M1 | M2 | M3 | M4 | Features | Bulk M1–M4 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Vegetation Index | With Vegetation Index | |||||||||||
Overall Accuracy | ||||||||||||
BIWE | 25 | 0.563 | 0.679 | 0.662 | 0.655 | 0.686 | 43 | 0.671 | 0.691 | 0.702 | 0.716 | 0.705 |
RF | 50 | 0.544 | 0.616 | 0.543 | 0.572 | 0.584 | 68 | 0.647 | 0.667 | 0.674 | 0.671 | 0.683 |
RFE | 131 | 0.664 | 0.659 | 0.628 | 0.645 | 0.641 | 149 | 0.702 | 0.688 | 0.667 | 0.709 | 0.683 |
PCA | 114 | 0.641 | 0.650 | 0.633 | 0.622 | 0.638 | 132 | 0.692 | 0.686 | 0.664 | 0.705 | 0.678 |
Average F1 scores | ||||||||||||
BIWE | 25 | 0.558 | 0.676 | 0.659 | 0.656 | 0.686 | 43 | 0.669 | 0.688 | 0.699 | 0.714 | 0.702 |
RF | 50 | 0.534 | 0.605 | 0.540 | 0.573 | 0.584 | 68 | 0.644 | 0.668 | 0.675 | 0.676 | 0.681 |
RFE | 131 | 0.660 | 0.656 | 0.626 | 0.649 | 0.642 | 149 | 0.701 | 0.690 | 0.663 | 0.713 | 0.685 |
PCA | 114 | 0.640 | 0.647 | 0.630 | 0.626 | 0.639 | 132 | 0.691 | 0.687 | 0.659 | 0.711 | 0.678 |
Technological Efficiency | ||||||||||||
BIWE | 25 | 0.023 | 0.027 | 0.026 | 0.026 | 0.027 | 43 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
RF | 50 | 0.011 | 0.012 | 0.011 | 0.011 | 0.012 | 68 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |
RFE | 131 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 149 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
PCA | 114 | 0.006 | 0.006 | 0.006 | 0.005 | 0.006 | 132 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
Cultivar | F1 Score | |||
---|---|---|---|---|
M1 | M2 | M3 | M4 | |
Bella di Spagna | 0.940 | 0.919 | 0.964 | 0.788 |
Bianchera | 0.621 | 0.615 | 0.658 | 0.602 |
Carboncella | 0.181 | 0.216 | 0.382 | 0.435 |
Coratina | 0.644 | 0.658 | 0.705 | 0.463 |
Dolce d’Andria | 0.598 | 0.558 | 0.718 | 0.833 |
Farga | 0.778 | 0.561 | 0.669 | 0.737 |
Frantoio | 0.414 | 0.644 | 0.578 | 0.887 |
II-82 | 0.693 | 0.691 | 0.735 | 0.767 |
Intosso | 0.772 | 0.517 | 0.499 | 0.515 |
Leccino | 0.811 | 0.901 | 0.925 | 0.821 |
Leccio del Corno | 0.688 | 0.671 | 0.732 | 0.616 |
Marzio | 0.397 | 0.500 | 0.451 | 0.409 |
Maurino | 0.925 | 0.948 | 0.933 | 0.803 |
Morchiaio | 0.917 | 0.929 | 0.636 | 0.746 |
Niedda | 0.828 | 0.862 | 0.762 | 0.776 |
Obliga | 0.485 | 0.476 | 0.339 | 0.406 |
Oblonga | 0.714 | 0.827 | 0.783 | 0.614 |
Oliva Rossa | 0.704 | 0.616 | 0.695 | 0.613 |
Piangente | 0.562 | 0.516 | 0.624 | 0.607 |
Picholine | 0.504 | 0.558 | 0.830 | 0.624 |
Raccioppella | 0.584 | 0.463 | 0.341 | 0.517 |
Raza | 0.718 | 0.739 | 0.747 | 0.758 |
Roggianella | 0.570 | 0.625 | 0.409 | 0.699 |
Rossellino | 0.652 | 0.517 | 0.796 | 0.808 |
Salegna | 0.589 | 0.594 | 0.524 | 0.718 |
Sargano di Fermo | 0.643 | 0.612 | 0.608 | 0.494 |
Sari Hasebi | 0.838 | 0.840 | 0.669 | 0.722 |
XVII-87 | 0.617 | 0.420 | 0.747 | 0.565 |
XXXVI | 0.938 | 0.686 | 0.912 | 0.861 |
Cultivar | Discriminatory Score | |||
---|---|---|---|---|
M1 | M2 | M3 | M4 | |
Bella di Spagna | 0.718 | 0.583 | 0.664 | 0.558 |
Bianchera | 0.587 | 0.598 | 0.608 | 0.513 |
Carboncella | 0.543 | 0.566 | 0.617 | 0.485 |
Coratina | 0.610 | 0.645 | 0.715 | 0.562 |
Dolce d’Andria | 0.628 | 0.697 | 0.628 | 0.602 |
Farga | 0.566 | 0.661 | 0.555 | 0.555 |
Frantoio | 0.642 | 0.629 | 0.637 | 0.673 |
II-82 | 0.623 | 0.709 | 0.554 | 0.616 |
Intosso | 0.577 | 0.584 | 0.620 | 0.540 |
Leccino | 0.725 | 0.810 | 0.749 | 0.792 |
Leccio del Corno | 0.622 | 0.674 | 0.634 | 0.631 |
Marzio | 0.597 | 0.628 | 0.573 | 0.565 |
Maurino | 0.774 | 1.049 | 0.930 | 0.629 |
Morchiaio | 0.653 | 0.670 | 0.619 | 0.567 |
Niedda | 0.577 | 0.626 | 0.622 | 0.595 |
Obliga | 0.559 | 0.602 | 0.675 | 0.542 |
Oblonga | 0.531 | 0.614 | 0.534 | 0.579 |
Oliva Rossa | 0.579 | 0.584 | 0.544 | 0.586 |
Piangente | 0.600 | 0.534 | 0.623 | 0.654 |
Picholine | 0.657 | 0.585 | 0.654 | 0.530 |
Raccioppella | 0.637 | 0.629 | 0.684 | 0.471 |
Raza | 0.677 | 0.634 | 0.738 | 0.683 |
Roggianella | 0.574 | 0.617 | 0.576 | 0.571 |
Rossellino | 0.590 | 0.645 | 0.673 | 0.545 |
Salegna | 0.660 | 0.686 | 0.623 | 0.663 |
Sargano di Fermo | 0.570 | 0.553 | 0.630 | 0.483 |
Sari Hasebi | 0.563 | 0.624 | 0.527 | 0.478 |
XVII-87 | 0.551 | 0.557 | 0.582 | 0.574 |
XXXVI | 0.529 | 0.570 | 0.533 | 0.494 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Distefano, M.; Avola, G.; Cantini, C.; Gioli, B.; Cavaliere, A.; Riggi, E. A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages. Remote Sens. 2025, 17, 3277. https://doi.org/10.3390/rs17193277
Distefano M, Avola G, Cantini C, Gioli B, Cavaliere A, Riggi E. A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages. Remote Sensing. 2025; 17(19):3277. https://doi.org/10.3390/rs17193277
Chicago/Turabian StyleDistefano, Miriam, Giovanni Avola, Claudio Cantini, Beniamino Gioli, Alice Cavaliere, and Ezio Riggi. 2025. "A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages" Remote Sensing 17, no. 19: 3277. https://doi.org/10.3390/rs17193277
APA StyleDistefano, M., Avola, G., Cantini, C., Gioli, B., Cavaliere, A., & Riggi, E. (2025). A Biologically Informed Wavelength Extraction (BIWE) Method for Hyperspectral Classification of Olive Cultivars and Ripening Stages. Remote Sensing, 17(19), 3277. https://doi.org/10.3390/rs17193277