A Multi-Model Framework Based on Remote Sensing to Assess Land Degradation in Rural Areas
Abstract
Highlights
- The application of standard approaches for monitoring land degradation to the Italian rural areas revealed several limitations;
- A new model, specifically tailored to the characteristics of the study area, was developed and tested.
- Since land degradation is highly context-specific, the monitoring approach must also be adapted accordingly;
- While context-specific methods may lead to a proliferation of approaches rather than standardization, they enable more targeted analysis and interventions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Modelling
2.3. MEDALUS Model
2.4. LDN SDG 15.3.1 Model
2.5. Albedo–Vegetation Feature Space Model
2.6. Limits and Advantages of the Analyzed Models
2.7. RURALIS Model
2.7.1. Evapotranspiration
2.7.2. Bare Soil and Tillage Exposure
2.7.3. Livestock Impact
2.7.4. Land Productivity
2.7.5. Parameters Integration and Degradation Index Development
3. Results
RURALIS Model Results
4. Discussion
4.1. Design and Features of RURALIS Model
4.2. Considerations on Model Validation
4.2.1. Comparative Analysis with Institutional Assessments of Land Degradation
4.2.2. Comparative Analysis with European Assessments of Land Degradation
4.2.3. Comparative Analysis on Degraded Areas Among the Different Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytical Hierarchical Process |
AI | Aridity Index |
CASA | Carnegie-Ames-Stanford Approach |
CCI | Climate Change Initiative |
CHRIPS | Climate Hazards Group InfraRed Precipitation with Station |
CLC | CORINE Land Cover |
CO2 | Carbon Dioxide |
CQI | Climate Quality Index |
CR | Consistency Ratio |
CRS | Coordinate Reference System |
DDI | Degradation Difference Index |
ECF | Environmental Critical Factor |
EEI | Evapotranspiration Efficiency Index |
ELT | Extract, Load and Transform |
ESAI | Environmentally Sensitive Area Index |
ET | Evapotranspiration |
FAPAR | Fraction of Absorbed Photosynthetically Active Radiation |
FCOVER | Fraction of Vegetation Cover |
FLU | Factor associated with Land Use |
FNF | Forest/Non-Forest |
GAUL | Global Administrative Unit Layers |
GEE | Google Earth Engine |
GIS | Geographic Information System |
GPP | Gross Primary Productivity |
HWSD | Harmonized World Soil Database |
IDI | Integrated Desertification Index |
IPCC | Intergovernmental Panel on Climate Change |
ISPRA | Istituto Superiore per la Protezione e la Ricerca Ambientale |
ISTAT | Istituto Nazionale di Statistica |
JRC | Joint Research Centre |
LAI | Leaf Area Index |
LD | Land Degradation |
LDDI | Land Degradation Development Index |
LDN | Land Degradation Neutrality |
LDSI | Land Degradation Status Index |
LMI | Land Multi-Degradation Index |
LST | Land Surface Temperature |
MEDALUS | MEditerranean Desertification And Land USe |
MQI | Management Quality Index |
MSAVI | Modified Soil Adjusted Vegetation Index |
MSI | MultiSpectral Instrument |
NDVI | Normalized Difference Vegetation Index |
NPP | Net Primary Productivity |
OSM | OpenStreetMap |
PET | Potential Evapotranspiration |
RALDE | Risk Assessment of Land Degradation |
RF | Random Forest |
RS | Remote Sensing |
RUE | Rainfall Use Efficiency |
RURALIS | RURal Areas Land Degradation Indicator System |
RVI | Radar Vegetation Index |
SAR | Synthetic Aperture Radar |
SAVI | Soil Adjusted Vegetation Index |
SDG | Sustainable Development Goals |
SEPAL | System for Earth Observation Data Access, Processing and Analysis for Land Monitoring |
SNAP | Sentinel Application Platform |
SNPA | National System for Environmental Protection |
SOC | Soil Organic Carbon |
SQI | Soil Quality Index |
TSEB | Two-Source Energy Balance |
UAA | Utilized Agricultural Area |
UN | United Nations |
UNCCD | United Nations Convention to Combat Desertification |
USLE | Universal Soil Loss Equation |
VQI | Vegetation Quality Index |
WLC | Weighted Linear Combination |
WUE | Water Use Efficiency |
References
- UNCCD. Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa; UN: Bonn, Germany, 1994. [Google Scholar]
- Santarsiero, V.; Nolè, G.; Lanorte, A.; Murgante, B. Towards Quantifying Rural Environment Soil Erosion: RUSLE Model and Remote Sensing Based Approach in Basilicata (Southern Italy). In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2022; Volume 482, pp. 2163–2172. ISBN 978-3-031-06824-9. [Google Scholar]
- Warren, A. Land Degradation Is Contextual. Land Degrad. Dev. 2002, 13, 449–459. [Google Scholar] [CrossRef]
- Sengani, D.; Ramoelo, A.; Archer, E. A Review of Fusion Framework Using Optical Sensors and Synthetic Aperture Radar Imagery to Detect and Map Land Degradation and Sustainable Land Management in the Semi-Arid Regions. Geocarto Int. 2023, 38, 2278325. [Google Scholar] [CrossRef]
- Prăvălie, R.; Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Chappell, A.; Miguez-Macho, G.; Maggi, F.; Peng, J.; Niculiță, M.; et al. A Unifying Modelling of Multiple Land Degradation Pathways in Europe. Nat. Commun. 2024, 15, 3862. [Google Scholar] [CrossRef]
- Previtali, M. A GIS and Remote Sensing Approach for Desertification Sensitivity Assessment of Cultural Landscape in Apulia Region (Italy). In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Fink, E., Cantoni, L., Champion, E., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12642, pp. 138–149. ISBN 978-3-030-73042-0. [Google Scholar]
- Schröter-Schlaack, C.; Albert, C.; von Haaren, C.; Hansjürgens, B.; Krätzig, S.; Albert, I. Ecosystem Services in Rural Areas: Basis for Human Wellbeing and Sustainable Economic Development: Summary for Decision-Makers; Naturkapital Deutschland—TEEB DE: Hannover, Germany; Leipzig, Germany, 2016; ISBN 978-3-944280-21-9. [Google Scholar]
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- D’Acunto, F.; Marinello, F.; Pezzuolo, A. Rural Land Degradation Assessment through Remote Sensing: Current Technologies, Models, and Applications. Remote Sens. 2024, 16, 3059. [Google Scholar] [CrossRef]
- Costa, D.P.; Herrmann, S.M.; Vasconcelos, R.N.; Duverger, S.G.; Franca Rocha, W.J.S.; Cambuí, E.C.B.; Lobão, J.S.B.; Santos, E.M.R.; Ferreira-Ferreira, J.; Oliveira, M.; et al. Bibliometric Analysis of Land Degradation Studies in Drylands Using Remote Sensing Data: A 40-Year Review. Land 2023, 12, 1721. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, Y.; Biswas, A. Land Degradation and Development Processes and Their Response to Climate Change and Human Activity in China from 1982 to 2015. Remote Sens. 2021, 13, 3516. [Google Scholar] [CrossRef]
- Lamaamri, M.; Lghabi, N.; Ghazi, A.; El Harchaoui, N.; Adnan, M.S.G.; Shakiul Islam, M. Evaluation of Desertification in the Middle Moulouya Basin (North-East Morocco) Using Sentinel-2 Images and Spectral Index Techniques. Earth Syst. Environ. 2023, 7, 473–492. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Determination by MODIS Satellite-Based Methods of Recent Global Trends in Land Surface Aridity and Degradation. J. Agric. Meteorol. 2019, 75, 153–159. [Google Scholar] [CrossRef]
- Kirui, O.K.; Mirzabaev, A.; Von Braun, J. Assessment of Land Degradation ‘on the Ground’ and from ‘Above’. SN Appl. Sci. 2021, 3, 318. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Madueño-Luna, A.; Madueño-Luna, J.M.; López-Gordillo, M.C.; Leiva-Piedra, J.L. Applying Remote Sensing Methods to Estimate Alterations in Land Cover Change and Degradation in the Desert Regions of the Southeast Iberian Peninsula. Remote Sens. 2023, 15, 3984. [Google Scholar] [CrossRef]
- Adesina, E.A.; Muhammad, H.I. Assessment of Land Degradation Using Remote Sensing Approach. Geod. Cartogr. 2023, 49, 142–148. [Google Scholar] [CrossRef]
- Abdi, B.; Kolo, K.; Shahabi, H. Soil Erosion and Degradation Assessment Integrating Multi-Parametric Methods of RUSLE Model, RS, and GIS in the Shaqlawa Agricultural Area, Kurdistan Region, Iraq. Environ. Monit. Assess. 2023, 195, 1149. [Google Scholar] [CrossRef] [PubMed]
- Makhamreh, Z.M. Land Degradation Vulnerability Assessment Based on Land Use Changes and FAO Suitability Analysis in Jordan. Span. J. Soil Sci. 2019, 9, 3900. [Google Scholar] [CrossRef]
- Afifi, A.A.; El Semary, M.A. The Impact of Long Term Cropping and Land Use Change on the Degradation of Heavy Clay Soils in the Nile Delta, Egypt. Model. Earth Syst. Environ. 2018, 4, 805–814. [Google Scholar] [CrossRef]
- Kosmas, C.; Kirkby, M.J.; Geeson, N. The Medalus Project: Mediterranean Desertification and Land Use, Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; Office for Official Publications of the European Communities: Luxembourg, 1999; ISBN 978-92-828-6349-7. [Google Scholar]
- Masoudi, M.; Vahedi, M.; Cerdà, A. Risk Assessment of Land Degradation (RALDE) Model. Land Degrad. Dev. 2021, 32, 2861–2874. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Natarajan, A.; Hegde, R.; Prakash, S.S. Assessment of Land Degradation Using Comprehensive Geostatistical Approach and Remote Sensing Data in GIS-Model Builder. Egypt. J. Remote Sens. Space Sci. 2019, 22, 323–334. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland Degradation and Restoration Monitoring and Driving Forces Analysis Based on Long Time-Series Remote Sensing Data in Xilin Gol League. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, E.; Kang, Y.; Ma, H. Assessment of Land Desertification and Its Drivers on the Mongolian Plateau Using Intensity Analysis and the Geographical Detector Technique. Remote Sens. 2022, 14, 6365. [Google Scholar] [CrossRef]
- Aldabbagh, Y.A.N.; Shafri, H.Z.M.; Mansor, S.; Ismail, M.H. Desertification Prediction with an Integrated 3D Convolutional Neural Network and Cellular Automata in Al-Muthanna, Iraq. Environ. Monit. Assess. 2022, 194, 715. [Google Scholar] [CrossRef]
- Bär, V.; Akinyemi, F.O.; Ifejika Speranza, C. Land Cover Degradation in the Reference and Monitoring Periods of the SDG Land Degradation Neutrality Indicator for Switzerland. Ecol. Indic. 2023, 151, 110252. [Google Scholar] [CrossRef]
- Iodice, F.; D’Acunto, F.; Bigagli, L. Monitoring Land Degradation from Space. GI_Forum 2021, 1, 143–149. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, Y.; Guo, H.; Zhang, X.; Zhang, X.; Xi, G.; Ma, C.; Duan, H. Is Land Degradation Worsening in Northern China? Quantitative Evidence and Enlightenment from Satellites. Land Degrad. Dev. 2023, 34, 1662–1680. [Google Scholar] [CrossRef]
- Samela, C.; Imbrenda, V.; Coluzzi, R.; Pace, L.; Simoniello, T.; Lanfredi, M. Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates. Land 2022, 11, 1010. [Google Scholar] [CrossRef]
- Petito, M.; Cantalamessa, S.; Pagnani, G.; Degiorgio, F.; Parisse, B.; Pisante, M. Impact of Conservation Agriculture on Soil Erosion in the Annual Cropland of the Apulia Region (Southern Italy) Based on the RUSLE-GIS-GEE Framework. Agronomy 2022, 12, 281. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Santarsiero, V.; Lanorte, A.; Nolè, G.; Cillis, G.; Tucci, B.; Murgante, B. Analysis of the Effect of Soil Erosion in Abandoned Agricultural Areas: The Case of NE Area of Basilicata Region (Southern Italy). Land 2023, 12, 645. [Google Scholar] [CrossRef]
- Gabriele, M.; Brumana, R.; Previtali, M.; Cazzani, A. A Combined GIS and Remote Sensing Approach for Monitoring Climate Change-Related Land Degradation to Support Landscape Preservation and Planning Tools: The Basilicata Case Study. Appl. Geomat. 2023, 15, 497–532. [Google Scholar] [CrossRef]
- Leginio, M.D.; Agrillo, A.; Congedo, L.; Munafò, M.; Riitano, N.; Terribile, F.; Manna, P. Analysis of Trends in Productivity Metrics in Assessing Land Degradation: A Case Study in the Campania Region of Southern Italy. Ecol. Indic. 2024, 161, 111962. [Google Scholar] [CrossRef]
- Colombo, R. Assessment of Mediterranean Pasture Condition Using MODIS Normalized Difference Vegetation Index Time Series. J. Appl. Remote Sens. 2012, 6, 063530. [Google Scholar] [CrossRef]
- Cillis, G.; Nolè, G.; Lanorte, A.; Santarsiero, V.; Tucci, B.; Scorza, F.; Murgante, B. Soil Erosion and Land Degradation in Rural Environment: A Preliminary GIS and Remote-Sensed Approach. In Computational Science and Its Applications—ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12954, pp. 682–694. ISBN 978-3-030-86978-6. [Google Scholar]
- Tucci, B.; Nolè, G.; Lanorte, A.; Santarsiero, V.; Cillis, G.; Scorza, F.; Murgante, B. Assessment and Monitoring of Soil Erosion Risk and Land Degradation in Arable Land Combining Remote Sensing Methodologies and RUSLE Factors. In Computational Science and Its Applications—ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12954, pp. 704–716. ISBN 978-3-030-86978-6. [Google Scholar]
- Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M. Evaluating Environmental Sensitivity at the Basin Scale through the Use of Geographic Information Systems and Remotely Sensed Data: An Example Covering the Agri Basin (Southern Italy). Catena 2000, 40, 19–35. [Google Scholar] [CrossRef]
- SNPA. Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici, 2024th ed.; [Land Consumption, Spatial Dynamics and Ecosystem Servicesibespoke. 2024 Edition]; Report Ambientali; SNPA: Roma, Italy, 2024. [Google Scholar]
- United Nations Statistics Division (UN STATS) SDG Indicator Metadata. Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf (accessed on 9 September 2025).
- Bissenbayeva, S.; Salmurzauly, R.; Tokbergenova, A.; Zhengissova, N.; Xing, J. Assessment of Degraded Lands in the Ile-Balkhash Region, Kazakhstan. Front. Earth Sci. 2025, 12, 1453994. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; Van Der Velde, M. From Parcel to Continental Scale—A First European Crop Type Map Based on Sentinel-1 and LUCAS Copernicus in-Situ Observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Pesaresi, M.; Politis, P. GHS-BUILT-C R2023A—GHS Settlement Characteristics, Derived from Sentinel2 Composite (2018) and Other GHS R2023A Data; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Copernicus Sentinel Data 2018. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 1 August 2025).
- Uptoearth GmbH D3.1 GIS Maps for the Identification of Soil for Biomass 2024. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e51a3b0bc3&appId=PPGMS (accessed on 14 September 2025).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System, Version 3.42. Available online: https://qgis.org/ (accessed on 14 September 2025).
- FAO. The Global Administrative Unit Layers (GAUL) Dataset, Implemented by FAO within the CountrySTAT and Agricultural Market Information System (AMIS) Projects; FAO: Rome, Italy, 2024. [Google Scholar]
- Python Software Foundation Python Language Reference, Version 3.12.7. Available online: http://www.python.org (accessed on 14 September 2025).
- Ferrara, A.; Kosmas, C.; Salvati, L.; Padula, A.; Mancino, G.; Nolè, A. Updating the MEDALUS-ESA Framework for Worldwide Land Degradation and Desertification Assessment. Land Degrad. Dev. 2020, 31, 1593–1607. [Google Scholar] [CrossRef]
- Sharma, L.K.; Raj, A.; Somawat, K. Spatio-Temporal Assessment of Environmentally Sensitive Areas (ESA) in The Thar Desert India, to Combat Desertification under UNCCD Framework. J. Arid Environ. 2021, 194, 104609. [Google Scholar] [CrossRef]
- Ouakil, A.; Eddefli, F.; Hichou, B.B.; Chao, J.; Elbelrhiti, H. Integration of Sentinel2 Data into a GIS System for the Mapping of Areas at Risk of Degradation by Applying the MEDALUS Model—Case of Sidi Mohamed Ben Abdellah Watershed (Morocco). Ecol. Eng. Environ. Technol. 2023, 24, 216–228. [Google Scholar] [CrossRef]
- Ouachoua, R.; Al Karkouri, J. Assessing Environmental Sensitivity Areas to Desertification Using MEDALUS Model in Ziz-Rheris Watershed, Morocco. Int. J. Sci. Res. Multidiscip. Stud. 2020, 6, 18–26. [Google Scholar]
- Singh, B.; Cattle, S.R.; Field, D.J. Edaphic Soil Science, Introduction to. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 35–58. ISBN 978-0-08-093139-5. [Google Scholar]
- Bucci, F.; Santangelo, M.; Fongo, L.; Alvioli, M.; Cardinali, M.; Melelli, L.; Marchesini, I. A New Digital Lithological Map of Italy at 1:100.000 Scale; 2 Data Points. 2021. Available online: https://doi.pangaea.de/10.1594/PANGAEA.935673 (accessed on 12 September 2025).
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the Effects of Slope Gradient and Land Use Change on Soil Quality Degradation through Digital Mapping of Soil Quality Indices and Soil Loss Rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- Harmonized World Soil Database, version 2.0; FAO: Rome, Italy; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2023; ISBN 978-92-5-137499-3.
- Vinhal-Freitas, I.C.; Corrêa, G.F.; Wendling, B.; Bobuľská, L.; Ferreira, A.S. Soil Textural Class Plays a Major Role in Evaluating the Effects of Land Use on Soil Quality Indicators. Ecol. Indic. 2017, 74, 182–190. [Google Scholar] [CrossRef]
- Colantoni, A.; Ferrara, C.; Perini, L.; Salvati, L. Assessing Trends in Climate Aridity and Vulnerability to Soil Degradation in Italy. Ecol. Indic. 2015, 48, 599–604. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Nastos, P.T.; Politi, N.; Kapsomenakis, J. Spatial and Temporal Variability of the Aridity Index in Greece. Atmospheric Res. 2013, 119, 140–152. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate; Copernicus Climate Change Service Climate Data Store (CDS): Bonn, Germany, 2017. [Google Scholar]
- Copernicus Climate Change Service. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations; Copernicus Climate Change Service: Bonn, Germany, 2019. [Google Scholar]
- Hamad, K.O.; Surucu, A. Land Degradation Sensitivity and Desertification Risk in Harrir Region, Northern Iraq. Heliyon 2024, 10, e27123. [Google Scholar] [CrossRef]
- MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V061. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A3 (accessed on 14 September 2025).
- Prăvălie, R.; Patriche, C.; Săvulescu, I.; Sîrodoev, I.; Bandoc, G.; Sfîcă, L. Spatial Assessment of Land Sensitivity to Degradation across Romania. A Quantitative Approach Based on the Modified MEDALUS Methodology. Catena 2020, 187, 104407. [Google Scholar] [CrossRef]
- Jafari, R.; Abedi, M. Remote Sensing-based Biological and Nonbiological Indices for Evaluating Desertification in Iran: Image versus Field Indices. Land Degrad. Dev. 2021, 32, 2805–2822. [Google Scholar] [CrossRef]
- Mancebo, F.; Sachs, I. (Eds.) Transitions to Sustainability, 1st ed.; Springer Netherlands: Imprint; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9532-6. [Google Scholar]
- United Nations Department of Economic and Social Affairs (UN DESA). E-Handbook on Sustainable Development Goals Indicators; UN DESA: New York, NY, USA, 2024. [Google Scholar]
- Di Gregorio, A.; Food and Agriculture Organization of the United Nations (FAO) (Eds.) Land Cover Classification System: Classification Concepts and User Manual, Software Version 2; Environment and Natural Resources Series GEO-Spatial Data and Information; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; ISBN 978-92-5-105327-0.
- Sims, N.C.; Green, C.; Newnham, G.J.; England, J.R.; Held, A.; Wulder, M.A.; Herold, M.; Guerschman, J.; Cox, S.J.D.; Huete, A.R.; et al. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of Land That Is Degraded Over Total Land Area, Version 1.0. 2017. Available online: https://docs.sepal.io/en/latest/modules/dwn/sdg_indicator.html (accessed on 31 July 2025).
- Liu, L.; Zhang, X.; Zhao, T. GLC_FCS30D: The First Global 30-m Land-Cover Dynamic Monitoring Product with Fine Classification System from 1985 to 2022. 2023. Available online: https://gee-community-catalog.org/projects/glc_fcs/ (accessed on 1 August 2025).
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Penman, J., Ed.; The Intergovernmental Panel on Climate Change: Hayama, Japan, 2003; ISBN 978-4-88788-003-0. [Google Scholar]
- Sims, N.C.; Newnham, G.J.; England, J.R.; Guerschman, J.; Cox, S.J.D.; Roxburgh, S.H.; Viscarra Rossel, R.A.; Fritz, S.; Wheeler, I. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of Land That Is Degraded Over Total Land Area, Version 2.0. 2021. Available online: https://www.unccd.int/resources/manuals-and-guides/good-practice-guidance-sdg-indicator-1531-proportion-land-degraded (accessed on 14 September 2025).
- Millennium Ecosystem Assessment (Program) (Ed.) Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- European Commission; Joint Research Centre. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management; Publications Office: Luxembourg, 2018. [Google Scholar]
- Kiani-Harchegani, M.; Sadeghi, S.H. Practicing Land Degradation Neutrality (LDN) Approach in the Shazand Watershed, Iran. Sci. Total Environ. 2020, 698, 134319. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Earth Resources Observation and Science (EROS) Center. Landsat 4–5 Thematic Mapper Level-2, Collection 2; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2020. [Google Scholar]
- Earth Resources Observation and Science (EROS) Center. Landsat 7 Enhanced Thematic Mapper Plus Level-2, Collection 2; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 1999. [Google Scholar]
- Earth Resources Observation and Science (EROS) Center. Landsat 8–9 Operational Land Imager/Thermal Infrared Sensor Level-2, Collection 2; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2013. [Google Scholar]
- Reith, J.; Ghazaryan, G.; Muthoni, F.; Dubovyk, O. Assessment of Land Degradation in Semiarid Tanzania—Using Multiscale Remote Sensing Datasets to Support Sustainable Development Goal 15.3. Remote Sens. 2021, 13, 1754. [Google Scholar] [CrossRef]
- Cherif, I.; Kolintziki, E.; Alexandridis, T.K. Monitoring of Land Degradation in Greece and Tunisia Using Trends.Earth with a Focus on Cereal Croplands. Remote Sens. 2023, 15, 1766. [Google Scholar] [CrossRef]
- Eggleston, H.S. (Ed.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- Hengl, T.; Wheeler, I. Soil Organic Carbon Content in x 5 g/Kg at 6 Standard Depths (0, 10, 30, 60, 100 and 200 Cm) at 250 m Resolution. 2018. Available online: https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02 (accessed on 11 September 2025).
- Trends.Earth. Conservation International Trends.Earth—User Guide, Version 2.17. 2025. Available online: https://docs.trends.earth/en/latest/for_users/index.html (accessed on 14 September 2025).
- Minelli, S. UNCCD 2018 Default Data: Methods and Interpretation for Land Degradation Reporting. 2018. Available online: https://policycommons.net/artifacts/1983874/default-data/2735639/ (accessed on 8 September 2025).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The Dominant Influencing Factors of Desertification Changes in the Source Region of Yellow River: Climate Change or Human Activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, R.; Li, H.; Diao, B.; Zheng, H.; Guo, L.; Liu, L.; Liu, J. The Changes of Desertification and Its Driving Factors in the Gonghe Basin of North China over the Past 10 Years. Land 2023, 12, 998. [Google Scholar] [CrossRef]
- Yue, Y.; Li, M.; Zhu, A.; Ye, X.; Mao, R.; Wan, J.; Dong, J. Land Degradation Monitoring in the Ordos Plateau of China Using an Expert Knowledge and BP-ANN-Based Approach. Sustainability 2016, 8, 1174. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Bian, Z.; Huang, J.; Zhang, Y. Study of the Desertification Index Based on the Albedo-MSAVI Feature Space for Semi-Arid Steppe Region. Environ. Earth Sci. 2019, 78, 232. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Belhadj, A.; Boulghobra, N.; Demnati Allache, F. Multi-Temporal Landsat Imagery and MSAVI Index for Monitoring Rangeland Degradation in Arid Ecosystem, Case Study of Biskra (Southeast Algeria). Environ. Monit. Assess. 2023, 195, 656. [Google Scholar] [CrossRef]
- Hu, X.; Li, L.; Huang, J.; Zeng, Y.; Zhang, S.; Su, Y.; Hong, Y.; Hong, Z. Radar Vegetation Indices for Monitoring Surface Vegetation: Developments, Challenges, and Trends. Sci. Total Environ. 2024, 945, 173974. [Google Scholar] [CrossRef]
- Dinesh Kumar, S.; Sitiraju, S.; Sharma, J. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton; Indian Cartographer. 2013. Available online: https://www.academia.edu/50102296/Radar_Vegetation_Index_as_an_Alternative_to_NDVI_for_Monitoring_of_Soyabean_and_Cotton (accessed on 14 September 2025).
- Chiesi, M.; Angeli, L.; Battista, P.; Fibbi, L.; Rapi, B.; Gozzini, B.; Maselli, F. Monitoring and Analysis of Crop Irrigation Dynamics in Central Italy through the Use of MODIS NDVI Data. Eur. J. Remote Sens. 2022, 55, 23–36. [Google Scholar] [CrossRef]
- Palacios-Orueta, A.; Khanna, S.; Litago, J.; Whiting, M.L.; Ustin, S.L. Assessment of NDVI and NDWI Spectral Indices Using MODIS Time Series Analysis and Development of a New Spectral Index Based on MODIS Shortwave Infrared Bands. In Proceedings of the 1st International Conference on Remote Sensing and Geoinformation Processing in the Assessment and Monitoring of Land Degradation and Desertification, Trier, Germany, 7–9 September 2005. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Hungate, B.A.; Koch, G.W. GLOBAL CHANGE|Biospheric Impacts and Feedbacks. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2003; pp. 876–886. ISBN 978-0-12-227090-1. [Google Scholar]
- Mehta, A.; Shukla, S.; Rakholia, S. Vegetation Change Analysis Using Normalized Difference Vegetation Index and Land Surface Temperature in Greater Gir Landscape. J. Sci. Res. 2021, 65, 01–06. [Google Scholar] [CrossRef]
- Bashar, A.; Haque, I.; Parvin, A.; Hossain, A. Water and Vegetation Cover Change Detection Using Multispectral Satellite Imagery: A Case Study on Jhenaidah District of Bangladesh. Bangladesh J. Multidiscip. Sci. Res. 2023, 7, 22–34. [Google Scholar] [CrossRef]
- How to Reverse Engineer DNA and Quantum Bio-Attacks. In Biomedical Defense Principles to Counter DNA Deep Hacking; Elsevier: Amsterdam, The Netherlands, 2023; pp. 307–331. ISBN 978-0-323-99914-4.
- Kolios, S.; Mitrakos, S.; Stylios, C. Detection of Areas Susceptible to Land Degradation in Cyprus Using Remote Sensed Data and Environmental Quality Indices. Land Degrad. Dev. 2018, 29, 2338–2350. [Google Scholar] [CrossRef]
- Wijitkosum, S. Factor Influencing Land Degradation Sensitivity and Desertification in a Drought Prone Watershed in Thailand. Int. Soil Water Conserv. Res. 2021, 9, 217–228. [Google Scholar] [CrossRef]
- Cudlín, O.; Pechanec, V.; Prokopová, M.; Cudlín, P. Assessing the Vulnerability to Land Degradation of (Not Only) Rural Landscapes Using the ESAI Index. J. Landsc. Ecol. 2021, 14, 128–144. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.; Zhang, B.; Chen, X. Sensitivity Assessment of Land Desertification in China Based on Multi-Source Remote Sensing. Remote Sens. 2023, 15, 2674. [Google Scholar] [CrossRef]
- Giordano, L.; Giordano, F.; Grauso, S.; Iannetta, M.; Sciortino, M.; Rossi, L.; Bonati, G. Identification of Areas Sensitive to Desertification in Sicily Region; ENEA: Rome, Italy, 2001. [Google Scholar]
- SEPAL. SDG Indicator 15.3.1 Module. Available online: https://docs.sepal.io/en/latest/modules/dwn/sdg_indicator.html#user-guide (accessed on 9 September 2025).
- Sims, N.C.; Barger, N.N.; Metternicht, G.I.; England, J.R. A Land Degradation Interpretation Matrix for Reporting on UN SDG Indicator 15.3.1 and Land Degradation Neutrality. Environ. Sci. Policy 2020, 114, 1–6. [Google Scholar] [CrossRef]
- Xoxo, S.; Mantel, S.; De Vos, A.; Mahlaba, B.; Le Maître, D.; Tanner, J. Towards SDG 15.3: The Biome Context as the Appropriate Degradation Monitoring Dimension. Environ. Sci. Policy 2022, 136, 400–412. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring Land Degradation at National Level Using Satellite Earth Observation Time-Series Data to Support SDG15—Exploring the Potential of Data Cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, K.; Liu, X.; Li, J.; Xia, M. Assessment of Land Degradation in Inner Mongolia between 2000 and 2020 Based on Remote Sensing Data. Geogr. Sustain. 2023, 4, 100–111. [Google Scholar] [CrossRef]
- Lamqadem, A.; Saber, H.; Pradhan, B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [Google Scholar] [CrossRef]
- Allen, R.G.; Food and Agriculture Organization of the United Nations (Eds.) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Biggs, T.W.; Nagler, P.L.; Ruhoff, A.; Petsini, T.; Marshall, M.; Kagone, S.; Senay, G.B.; Petropoulos, G.P.; Abe, C.; Glenn, E.P. Remote Sensing of Evapotranspiration from Croplands. In Remote Sensing Handbook, Volume V; CRC Press: Boca Raton, FL, USA, 2024; pp. 313–382. ISBN 978-1-003-54140-0. [Google Scholar]
- Technical Committee on Standardization of Reference Evapotranspiration. The ASCE Standardized Reference Evapotranspiration Equation; Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., Snyder, R.L., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2005; ISBN 978-0-7844-0805-6. [Google Scholar]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. A Two-Source Approach for Estimating Soil and Vegetation Energy Fluxes from Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modelling High-Resolution Actual Evapotranspiration through Sentinel-2 and Sentinel-3 Data Fusion. Remote Sens. 2020, 12, 1433. [Google Scholar] [CrossRef]
- DHI GRAS; IRTA; Sandholt ApS. User Manual for SEN-ET SNAP Plugin. 2020. Available online: https://www.esa-sen4et.org/static/media/sen-et-user-manual-v1.1.0.2cd617fb322658397542.pdf (accessed on 1 September 2025).
- Ghassemi, B.; Dujakovic, A.; Żółtak, M.; Immitzer, M.; Atzberger, C.; Vuolo, F. Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sens. 2022, 14, 541. [Google Scholar] [CrossRef]
- Bausch, W.C.; Neale, C.M. Crop Coefficients Derived from Reflected Canopy Radiation: A Concept. Trans. ASAE 1987, 30, 0703–0709. [Google Scholar] [CrossRef]
- Idrisa, H.; Kadam, S.A.; Gorantiwar, S.D. Estimation of Crop Coefficients Based on Normalize Difference Vegetation Index. J. Agric. Res. Technol. 2022, 47, 381–388. [Google Scholar] [CrossRef]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER; Algorithm Theoretical Basis Document. 2016. Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 1 September 2025).
- Copernicus Climate Change Service. ERA5-Land Monthly Averaged Data from 1950 to Present; Copernicus Climate Change Service: Bonn, Germany, 2019. [Google Scholar]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and Assessment of the SMAP Enhanced Passive Soil Moisture Product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Nzuza, P.; Ramoelo, A.; Odindi, J.; Kahinda, J.M.; Madonsela, S. Predicting Land Degradation Using Sentinel-2 and Environmental Variables in the Lepellane Catchment of the Greater Sekhukhune District, South Africa. Phys. Chem. Earth Parts ABC 2021, 124, 102931. [Google Scholar] [CrossRef]
- Masuku, S.N.; Mabaso, S.D. Land Use and Land Cover Change Analysis and Soil Erosion Assessment Using GIS and Remote Sensing in Nkonjwa Community, Eswatini. 2024. Available online: https://www.authorea.com/users/856403/articles/1240845-land-use-and-land-cover-change-analysis-and-soil-erosion-assessment-using-gis-and-remote-sensing-in-nkonjwa-community-eswatini (accessed on 12 September 2025).
- Zhao, J.; Du, D.; Chen, L.; Liang, X.; Chen, H.; Jin, Y. HA-Net for Bare Soil Extraction Using Optical Remote Sensing Images. Remote Sens. 2024, 16, 3088. [Google Scholar] [CrossRef]
- Ragasová, L.; Kopta, T.; Winkler, J.; Pokluda, R. The Current Stage of Greening Vegetation in Selected Wine-Regions of South Moravian Region (Czech Republic). Agronomy 2019, 9, 541. [Google Scholar] [CrossRef]
- Lal, R. Soil Degradation by Erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Huang, S.; Islam, M.U.; Jiang, F. The Effect of Deep-Tillage Depths on Crop Yield: A Global Meta-Analysis. Plant Soil Environ. 2023, 69, 105–117. [Google Scholar] [CrossRef]
- Cheng, B.; Dai, H.; Liu, T.; Liu, H.; Li, J.; Qiao, R.; Shao, Y.; Wang, S.; Wang, J. Mineralization Characteristics of Soil Organic Carbon under Different Herbaceous Plant Mosaics in Semi-Arid Grasslands. Sci. Rep. 2024, 14, 22196. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Mzid, N.; Pignatti, S.; Huang, W.; Casa, R. An Analysis of Bare Soil Occurrence in Arable Croplands for Remote Sensing Topsoil Applications. Remote Sens. 2021, 13, 474. [Google Scholar] [CrossRef]
- Satalino, G.; Mattia, F.; Balenzano, A.; Lovergine, F.P.; Rinaldi, M.; De Santis, A.P.; Ruggieri, S.; Nafria Garcia, D.A.; Gomez, V.P.; Ceschia, E.; et al. Sentinel-1 & Sentinel-2 Data for Soil Tillage Change Detection. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6627–6630. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Avondo, M.; Secchiari, P.; Battaglini, L.M.; Bonanno, A.; Pulina, G. Soil, Pasture and Animal Product Quality. Ital. J. Agron. 2013, 8, e19. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulén, B.; Kirchmann, H. Nutrient Leaching from Manure-Amended Topsoils (Cambisols and Histosols) in Sweden. Geoderma Reg. 2015, 5, 209–214. [Google Scholar] [CrossRef]
- Pulina, G.; Zucca, C. Un Nuovo Indicatore Territoriale per La Valutazione Dell’impatto Del Pascolamento. Inf. Agrar. 1999, 42/99, 105–110. [Google Scholar]
- Gabriele, M.; Previtali, M. A GIS and Remote Sensing Approach for Desertification Sensitivity Assessment in Basilicata Region (Italy). In Proceedings of the 2020 3rd International Conference on Geoinformatics and Data Analysis, Marseille, France, 15 April 2020; ACM: New York, NY, USA; pp. 62–66. [Google Scholar]
- Istituto Nazionale di Statistica (Istat). Confini Delle Unità Amministrative a Fini Statistici 2024 [Boundaries of Administrative Units for Statistical Purposes 2024]; Istituto Nazionale di Statistica (Istat): Roma, Italy, 2018. [Google Scholar]
- Cozzi, G.; Ragno, E. Meat Production and Market in Italy. Agric. Conspec. Sci. 2003, 68, 71–77. [Google Scholar]
- Eurostat Livestock Unit (LSU). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Livestock_unit_(LSU) (accessed on 1 August 2025).
- Running, S.; Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD17A3HGF (accessed on 1 August 2025).
- Yadav, B.; Malav, L.C.; Jiménez-Ballesta, R.; Kumawat, C.; Patra, A.; Patel, A.; Jangir, A.; Nogiya, M.; Meena, R.L.; Moharana, P.C.; et al. Modeling and Assessment of Land Degradation Vulnerability in Arid Ecosystem of Rajasthan Using Analytical Hierarchy Process and Geospatial Techniques. Land 2022, 12, 106. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G.; Lu, S. Assessment of Land Ecosystem Health with Monte Carlo Simulation: A Case Study in Qiqihaer, China. J. Clean. Prod. 2020, 250, 119522. [Google Scholar] [CrossRef]
- Gao, H. Agricultural Soil Data Analysis Using Spatial Clustering Data Mining Techniques. In Proceedings of the 2021 IEEE 13th International Conference on Computer Research and Development (ICCRD), Beijing, China, 5 January 2021; pp. 83–90. [Google Scholar]
- Salvati, L.; Smiraglia, D.; Bajocco, S.; Ceccarelli, T.; Zitti, M.; Perini, L. Map of Long-Term Changes in Land Sensitivity to Degradation of Italy. J. Maps 2014, 10, 65–72. [Google Scholar] [CrossRef]
- Kennard, M.J.; Mackay, S.J.; Pusey, B.J.; Olden, J.D.; Marsh, N. Quantifying Uncertainty in Estimation of Hydrologic Metrics for Ecohydrological Studies. River Res. Appl. 2010, 26, 137–156. [Google Scholar] [CrossRef]
- Panagos, P.; Broothaerts, N.; Ballabio, C.; Orgiazzi, A.; De Rosa, D.; Borrelli, P.; Liakos, L.; Vieira, D.; Van Eynde, E.; Arias Navarro, C.; et al. How the EU Soil Observatory Is Providing Solid Science for Healthy Soils. Eur. J. Soil Sci. 2024, 75, e13507. [Google Scholar] [CrossRef]
- Munafò, M. Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2021. SNPA 22/21 [Land Consumption, Spatial Dynamics and Ecosystem Servicesibespoke. 2021 Edition. SNPA Italy 22/21]. 2021. Available online: https://www.snpambiente.it/wp-content/uploads/2021/11/Rapporto_consumo_di_suolo_2021.pdf (accessed on 15 August 2025).
- Assennato, F.; Di Leginio, M.; d’Antona, M.; Marinosci, I.; Congedo, L.; Riitano, N.; Luise, A.; Munafò, M. Land Degradation Assessment for Sustainable Soil Management. Ital. J. Agron. 2020, 15, 1770. [Google Scholar] [CrossRef]
Land Type | Land Subtype | Sensitivity Ranges |
---|---|---|
Not affected | N | ≥1.00 ≤ 1.170 |
Potentially affected | P | >1.170 ≤ 1.225 |
Fragile | F1 | >1.225 ≤ 1.275 |
F2 | >1.275 ≤ 1.325 | |
F3 | >1.325 ≤ 1.375 | |
Critical | C1 | >1.375 ≤ 1.425 |
C2 | >1.425 ≤ 1.530 | |
C3 | >1.530 ≤ 2.000 |
Index | Parameter | Source/Reference | Resolution | Periods |
---|---|---|---|---|
ETp | Temperature | ERA5-Land monthly averaged data [129] | ~11 km | 2017–2024 |
Wind speed | ||||
Atmospheric pressure | ||||
Net solar radiation | ||||
Net thermal radiation | ||||
ETa | Crop type | EUCROPMAP 2018 [42] | 10 m | 2017–2021 |
EUCROPMAP 2022 [124] | 2022–2024 | |||
NDVI | Harmonized Sentinel-2 MultiSpectral Instrument (MSI) [45] | 10 m | 2017–2014 | |
LAI | 10 m | |||
Albedo | 20 m | |||
DEM | NASA SRTM Digital Elevation [58] | 30 m | NA | |
Soil texture | SoilGrids [130] | 250 m | NA | |
LST | Landsat 8 [83] | 30 m | 2017–2024 | |
Soil moisture | NASA SMAP [131] | 9 km | 2017–2024 | |
Temperature | ERA5-Land monthly averaged data [129] | ~11 km | 2017–2024 | |
Wind speed | ||||
Atmospheric pressure | ||||
Net solar radiation | ||||
Net thermal radiation |
RURALIS Indicators | Average Weights |
---|---|
EEI | 1.75 |
Bare soil frequency | 22.61 |
Tillage exposure | 22.49 |
Overgrazing | 22.80 |
Livestock density | 18.01 |
Land productivity | 12.32 |
Model | Indicator System | Quantification Method | Data Sources | Multitemporal Approach |
---|---|---|---|---|
MEDALUS |
| Geometric mean of the weighted quality indexes |
| Static (latest available dataset) |
LDN SDG 15.3.1 |
| One Out, All Out (1OAO) principle |
| Baseline period: 2000–2015 Monitoring period: 2015–2022 |
Albedo–Vegetation feature space |
| Feature space classification |
|
Baseline period: 2018 Monitoring period: 2024 |
RURALIS |
| Composite index with context-specific weighting |
| Period: 2017–2024 |
RURALIS | MEDALUS | LDN SDG 15.3.1 | Albedo–Vegetation Feature Space |
---|---|---|---|
Evapotranspiration Efficiency Index (EEI) calculated according to the TSEB model as the ratio between actual and potential evapotranspiration. It is a composite index employing input data associated with climate, soil, crop type and orography. | Potential evapotranspiration calculated according to Thornthwaite’s method from monthly temperature to derive the aridity index | Not employed | Not employed |
Bare soil exposure | Not employed | Not employed | Not employed |
Tillage frequency | Not employed | Not employed | Not employed |
Livestock pressure | Not employed | Not employed | Not employed |
Land Productivity calculated using the NPP product from MODIS | Not employed | Land Productivity calculated using the NDVI as proxy from Landsat | Not employed |
Comparative Aspects | SNPA (2024) Report [39] | Present Study (LDN SDG 15.3.1) | |
---|---|---|---|
Time frame | Baseline | 2000–2015 | 2000–2015 |
Reporting period | 2004–2019 | 2015–2022 | |
Study area | Italy | Rural areas in Italy | |
Input data | Sub-indicator: Land-cover change | Corine Land Cover 2000–2018 (100 m) SNPA soil consumption map (10 m) | Global 30 m Land Cover Change 2000–2022 (30 m) |
Sub-indicator: Land Productivity | NDVI calculated from MODIS (250 m) integrated with the calculation of Water Use Efficiency (WUE) from MODIS (500 m) as climatic calibration | NDVI calculated from Landsat (30 m) integrated with the calculation of RUE from CHRIPS (~5 km) as climatic calibration | |
Sub-indicator: SOC change | Global Soil Organic Carbon Map at 0–30 cm (~1 km) | OpenLandMap Soil organic Carbon content at 30 cm depth (250 m) | |
Additional degradation factors |
| Not available. | |
Processing tools | Trends.Earth | GEE (version 2025) | |
GEE | Python (version 2.6.4) | ||
QGIS | QGIS (version 3.4.2.0) |
Comparative Aspects | LMI [5] | RURALIS |
---|---|---|
Time reference | 1981–2021 | 2017–2024 |
Study area | Agricultural areas in Europe, including Italy | Rural areas in Italy |
Basemap | CORINE Land Cover 2018 (100 m) | EUCROPMAP 2018 (10 m) |
Output resolution | 500 m | 20 m |
Conceptual approach | LD as the convergence pattern of 12 LD patterns | LD as a whole complex pattern |
Index | LMI highlights the number of interacting processes | RURALIS expresses the degree of degradation based on contributing factors |
Methodology | No weighting system. Equal importance assigned to all degradation processes | Weighting system applied to all factors, considering spatial variability at a sub-national scale. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Acunto, F.; Dubovyk, O.; Raghuvanshi, N.; Marinello, F.; Iodice, F.; Pezzuolo, A. A Multi-Model Framework Based on Remote Sensing to Assess Land Degradation in Rural Areas. Remote Sens. 2025, 17, 3276. https://doi.org/10.3390/rs17193276
D’Acunto F, Dubovyk O, Raghuvanshi N, Marinello F, Iodice F, Pezzuolo A. A Multi-Model Framework Based on Remote Sensing to Assess Land Degradation in Rural Areas. Remote Sensing. 2025; 17(19):3276. https://doi.org/10.3390/rs17193276
Chicago/Turabian StyleD’Acunto, Federica, Olena Dubovyk, Nikhil Raghuvanshi, Francesco Marinello, Filippo Iodice, and Andrea Pezzuolo. 2025. "A Multi-Model Framework Based on Remote Sensing to Assess Land Degradation in Rural Areas" Remote Sensing 17, no. 19: 3276. https://doi.org/10.3390/rs17193276
APA StyleD’Acunto, F., Dubovyk, O., Raghuvanshi, N., Marinello, F., Iodice, F., & Pezzuolo, A. (2025). A Multi-Model Framework Based on Remote Sensing to Assess Land Degradation in Rural Areas. Remote Sensing, 17(19), 3276. https://doi.org/10.3390/rs17193276