Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt
Abstract
Highlights
- Multi-sensor InSAR (Sentinel-1 and ALOS-2) resolves up to 43 cm line-of-sight (LOS) displacement and constrains a NW-dipping blind reverse fault (strike ≈ 213°, dip ≈ 58°) with peak slip of ~5 m at 8–12 km depth, without surface rupture.
- Static Coulomb failure stress change (ΔCFS) modeling indicates that the 2023 Mw 6.2 Meta-Cundinamarca earthquake increased stress on the 2025 rupture plane.
- Rupture located beneath the 7–10 km sedimentary cover, together with the regional structural framework, indicates basement-involved (thick-skinned) reactivation, most plausibly along a Guaicáramo-related fault within the Eastern Cordillera fold-and-thrust belt.
- The combined 2023–2025 sequence concentrates positive ΔCFS on the southeastern Guaicáramo and adjacent segments, implying elevated near-term seismic hazard and priority targets for monitoring and risk mitigation.
Abstract
1. Introduction
2. Tectonic Setting
3. Methods
3.1. InSAR Data
3.2. Model Settings
4. Results
4.1. Coseismic Deformation Fields
4.2. Fault Geometry and Slip Distribution
5. Discussion
5.1. Thick-Skinned Characteristics of the 2025 Paratebueno Earthquake
5.2. Stress Triggering and Hazard Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 2000, 19, 787–813. [Google Scholar] [CrossRef]
- Dicelis, G.; Assumpção, M.; Kellogg, J.; Pedraza, P.; Dias, F. Estimating the 2008 Quetame (Colombia) earthquake source parameters from seismic data and InSAR measurements. J. South Am. Earth Sci. 2016, 72, 250–265. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Hu, X.; Yu, C.; Liu, Z.; Zhang, Y.; Li, Z.; Song, C.; Han, B.; Liu, H.; Li, J. Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake. J. Earth Sci. 2025, 36, 275–290. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Hu, X.; Song, C.; Li, S.; Liu, H.; Li, J.; Han, B.; Liu, Z.; Liu, M.; et al. Source Characteristics and Induced Hazards of the 2025 M6.8 Dingri Earthquake, Xizang, China, Revealed by Imaging Geodesy. J. Earth Sci. 2025, 36, 847–851. [Google Scholar] [CrossRef]
- Fang, N.; Chen, Z.; Zhao, L.; Sun, K.; Xie, L.; Xu, W. Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake. Remote Sens. 2025, 17, 2971. [Google Scholar] [CrossRef]
- Valencia Ortiz, J.A.; Martínez-Graña, A.M.; Cabero Morán, M.T. DInSAR Multi-Temporal Analysis for the Characterization of Ground Deformations Related to Tectonic Processes in the Region of Bucaramanga, Colombia. Remote Sens. 2024, 16, 449. [Google Scholar] [CrossRef]
- Siravo, G.; Fellin, M.G.; Faccenna, C.; Bayona, G.; Lucci, F.; Molin, P.; Maden, C. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 2018, 37, 4311–4337. [Google Scholar] [CrossRef]
- Cortés, M.; Colletta, B.; Angelier, J. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J. South Am. Earth Sci. 2006, 21, 437–465. [Google Scholar] [CrossRef]
- Mora-Páez, H.; Mencin, D.J.; Molnar, P.; Diederix, H.; Cardona-Piedrahita, L.; Peláez-Gaviria, J.-R.; Corchuelo-Cuervo, Y. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 2016, 43, 8407–8416. [Google Scholar] [CrossRef]
- Pennington, W.D. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 1981, 86, 10753–10770. [Google Scholar] [CrossRef]
- Siravo, G.; Molin, P.; Sembroni, A.; Fellin, M.G.; Faccenna, C. Tectonically driven drainage reorganization in the Eastern Cordillera, Colombia. Geomorphology 2021, 389, 107847. [Google Scholar] [CrossRef]
- Velandia, F.; Acosta, J.; Terraza, R.; Villegas, H. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 2005, 399, 313–329. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Tanioka, Y. Study on the 1906 Colombia-Ecuador Megathrust Earthquake Based on Tsunami Waveforms Observed at Tide Gauges: Release Variation of Accumulated Slip Deficits in the Source Area. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021375. [Google Scholar] [CrossRef]
- Pardo-Torres, G.; Camargo, G. Characterization of the Soapaga Fault deformation in the central part of the Eastern Cordillera, Colombia. J. South Am. Earth Sci. 2023, 126, 104339. [Google Scholar] [CrossRef]
- García-Delgado, H.; Velandia, F. Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology 2020, 349, 106914. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Liang, C.; Fielding, E.J. Measuring Azimuth Deformation with L-Band ALOS-2 ScanSAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2725–2738. [Google Scholar] [CrossRef]
- Liang, C.; Fielding, E.J. Interferometry with ALOS-2 Full-Aperture ScanSAR Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2739–2750. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Chen, C.; Zebker, H. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 2006, 441, 968–971. [Google Scholar] [CrossRef]
- Jolivet, R.; Simons, M.; Agram, P.S.; Duputel, Z.; Shen, Z.K. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 2015, 42, 297–306. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Jónsson, S.n.; Zebker, H.; Segall, P.; Amelung, F. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z. The 2011 MW 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef]
- Fukahata, Y.; Wright, T.J. A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle. Geophys. J. Int. 2008, 173, 353–364. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Ding, K.; Xu, C. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet. Remote Sens. 2020, 12, 3012. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. Solid Earth 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Talebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Žilić, I.; Causse, M.; Vallée, M.; Markušić, S. High Stress Drop and Slow Rupture During the 2020 MW6.4 Intraplate Petrinja Earthquake, Croatia. J. Geophys. Res. Solid Earth 2025, 130, e2024JB029107. [Google Scholar] [CrossRef]
- Fitz-Díaz, E.; Lawton, T.F.; Juárez-Arriaga, E.; Chávez-Cabello, G. The Cretaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics. Earth-Sci. Rev. 2018, 183, 56–84. [Google Scholar] [CrossRef]
- King, R.C.; Morley, C.K. Wedge Geometry and Detachment Strength in Deepwater Fold-Thrust Belts. Earth-Sci. Rev. 2017, 165, 268–279. [Google Scholar] [CrossRef]
- Mock, S.; Herwegh, M. Tectonics of the central Swiss Molasse Basin: Post-Miocene transition to incipient thick-skinned tectonics? Tectonics 2017, 36, 1699–1723. [Google Scholar] [CrossRef]
- Costantino, D.; Paton, D.; Mora, A. Structural Style and Kinematic History of the Colombian Eastern Cordillera. Front. Earth Sci. 2021, 9, 636458. [Google Scholar] [CrossRef]
- Butler, K.; Schamel, S. Structure along the eastern margin of the central Cordillera, upper Magdalena Valley, Colombia. J. South Am. Earth Sci. 1988, 1, 109–120. [Google Scholar] [CrossRef]
- Gómez, E.a.; Jordan, T.E.; Allmendinger, R.W.; Hegarty, K.; Kelley, S.; Heizler, M. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. GSA Bull. 2003, 115, 131–147. [Google Scholar] [CrossRef]
- Martínez, J.; Mora, A.; Tesón-Del Hoyo, E.; Pacheco-Mendoza, J.Y.; Becerra-Bayona, C.; Tarazona, N.; Sanchez Rueda, N. A review of petroleum systems and hydrocarbon potential in the Eastern Cordillera and eastern foothills belt, Colombia. Pet. Geosci. 2025, 31, petgeo2024–petgeo2068. [Google Scholar] [CrossRef]
- Bermúdez, M.A.; Moreno, G.B.S.; Fernández, A.G.; González, N.U.; Chaparro, L.A.B. Comparison between thermal models across the Middle Magdalena Valley, Eastern Cordillera, and Eastern Llanos basins in Colombia. Open Geosci. 2024, 16, 20220725. [Google Scholar] [CrossRef]
- Tesón, E.; Mora, A.; Arias, A.; Namson, J.; Teixell, A.; Castellanos, J.; Casallas, W.; Julivert, M.; Taylor, M.; Ibañez-Mejia, M.; et al. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geol. Soc. Lond. Spec. Publ. 2013, 377, 257–283. [Google Scholar] [CrossRef]
- Dimaté, C.; Rivera, L.; Cisternas, A. Re-visiting large historical earthquakes in the Colombian Eastern Cordillera. J. Seismol. 2005, 9, 1–22. [Google Scholar] [CrossRef]
- Stein, R. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Shan, X.; Zhong, M.; Wang, X.; Gao, Z. Fault Kinematics of the 2023 Mw 6.0 Jishishan Earthquake, China, Characterized by Interferometric Synthetic Aperture Radar Observations. Remote Sens. 2024, 16, 1746. [Google Scholar] [CrossRef]
- Stein, R.; Barka, A.; Dieterich, J. Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering. Geophys. J. Int. 1997, 128, 594–604. [Google Scholar] [CrossRef]
- Nalbant, S.S.; McCloskey, J.; Steacy, S.; Barka, A.A. Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet. Sci. Lett. 2002, 195, 291–298. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. Solid Earth 2005, 110, BO5S16. [Google Scholar] [CrossRef]
- Bosl, W. Aftershocks and pore fluid diffusion following the 1992 Landers earthquake. J. Geophys. Res. 2002, 107, ESE-17. [Google Scholar] [CrossRef]
- Jónsson, S.; Segall, P.; Pedersen, R.; Björnsson, G. Post-earthquake ground movements correlated to pore-pressure transients. Nature 2003, 424, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Terakawa, T.; Hashimoto, C.; Matsu’ura, M. Changes in seismic activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure. Earth Planet. Sci. Lett. 2013, 365, 17–24. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Event | Source | Epicenter | NP1/NP2 | Magnitude (Mw) | ||||
---|---|---|---|---|---|---|---|---|
Lon (°W) | Lat (°N) | Depth (km) | Strike (°) | Dip (°) | Rake (°) | |||
2023 | USGS 1 | 73.62 | 4.35 | 10 | 235 | 42 | 176 | 6.2 |
328 | 87 | 48 | ||||||
GCMT 2 | 73.57 | 4.34 | 20 | 218 | 41 | 159 | 6.2 | |
324 | 77 | 51 | ||||||
GFZ 3 | 73.56 | 4.34 | 16 | 215 | 70 | 131 | 6.1 | |
326 | 45 | 28 | ||||||
2025 | USGS | 73.13 | 4.48 | 9 | 205 | 52 | 87 | 6.3 |
30 | 38 | 94 | ||||||
GCMT | 73.23 | 4.42 | 12 | 202 | 48 | 79 | 6.4 | |
39 | 43 | 102 | ||||||
SGC 4 | 73.28 | 4.45 | 15 | 213 | 47 | 91 | 6.4 | |
31 | 43 | 89 | ||||||
GFZ | 73.16 | 4.48 | 11 | 206 | 62 | 86 | 6.4 | |
33 | 27 | 95 | ||||||
This study | 73.29 | 4.43 | 9 | 213 | 58 | 104 5 | 6.4 |
Satellite | Track | Primary | Secondary | Perp. Baseline (m) | Temp. Baseline (Days) |
---|---|---|---|---|---|
Sentinel-1 | Ascending | 27 May 2025 | 8 June 2025 | −11 | 12 |
Descending | 3 June 2025 | 9 June 2025 | 59 | 6 | |
ALOS-2 | Descending | 29 May 2025 | 26 June 2025 | 416 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Hu, J.-C.; Yu, C.; Li, Z.; Liu, Z. Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt. Remote Sens. 2025, 17, 3264. https://doi.org/10.3390/rs17193264
Han B, Hu J-C, Yu C, Li Z, Liu Z. Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt. Remote Sensing. 2025; 17(19):3264. https://doi.org/10.3390/rs17193264
Chicago/Turabian StyleHan, Bingquan, Jyr-Ching Hu, Chen Yu, Zhenhong Li, and Zhenjiang Liu. 2025. "Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt" Remote Sensing 17, no. 19: 3264. https://doi.org/10.3390/rs17193264
APA StyleHan, B., Hu, J.-C., Yu, C., Li, Z., & Liu, Z. (2025). Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt. Remote Sensing, 17(19), 3264. https://doi.org/10.3390/rs17193264