Satellite-Ground Data Fusion for Hourly 5-km Gridded Human-Perceived Temperature Estimation in the Yangtze River Basin, China
Abstract
Highlights
- Twelve human-perceived temperature indices were constructed for the Yangtze River Basin at 5 km hourly resolution by integrating multi-source datasets with the LightGBM model.
- The model demonstrated high accuracy across all indices and effectively captured the spatial heterogeneity and diurnal evolution of the regional thermal environment.
- Provides a reliable high-resolution HPT dataset to support heat-related health risk assessment in densely populated regions.
- Offers an important data foundation for climate adaptation and management strategies in the Yangtze River Basin and other similar regions.
Abstract
1. Introduction
2. Data and Methods
2.1. Satellite, Reanalysis and Ground Observation Data
2.2. Method
3. Results
3.1. Accuracy Assessment of Spatiotemporal LightGBM Model
3.2. Spatiotemporal Accuracy of LightGBM in Human-Perceived Temperature Estimation
3.3. Spatial Variation in Human-Perceived Temperatures
3.4. SHAP Analysis for LightGBM Model Interpretability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Human-Perceived Temperature | Computation Equation | Reference |
---|---|---|---|
ATin | Apparent Temperature (indoors) | Steadman [49] | |
ATout | Apparent Temperature (outdoors, in the shade) | Steadman [50] | |
DI | Discomfort index | Epstein et al. [51] | |
ET | Effective Temperature | Gagge et al. [52] | |
HI | Heat Index | Anderson et al. [53] | |
HMI | Humidex | Masterton and Richardson [54] | |
MDI | Modified DiscomfortIndex | Moran et al. [55] | |
NET | NetEffective Temperature | Houghton [56] | |
sWBGT | Simplified Wet-bulb Temperature | Willett and Sherwood [57] | |
TEM | Surface Air Temperature | - | - |
WBT | Wet-bulb Temperaturfe | Stull [58] | |
WCT | Wind Chill Temperature | Osczevski and Bluestein [59] |
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Climate Change 2023: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Brimicombe, C.; Di Napoli, C.; Cornforth, R.; Pappenberger, F.; Petty, C.; Cloke, H.L. Borderless Heat Hazards with Bordered Impacts. Earth’s Future 2021, 9, e2021EF002064. [Google Scholar] [CrossRef]
- Luo, M.; Wu, S.; Lau, G.N.-C.; Pei, T.; Liu, Z.; Wang, X.; Ning, G.; Chan, T.O.; Yang, Y.; Zhang, W. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. Sci. Adv. 2025, 10, eadl1598. [Google Scholar] [CrossRef] [PubMed]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Moda, H.M.; Filho, W.L.; Minhas, A. Impacts of Climate Change on Outdoor Workers and Their Safety: Some Research Priorities. Int. J. Environ. Res. Public Health 2019, 16, 3458. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Xin, Y. Changes in global heat waves and its socioeconomic exposure in a warmer future. Clim. Risk Manag. 2022, 38, 100459. [Google Scholar] [CrossRef]
- Jaiswal, R.; Mall, R.K.; Patel, S.; Singh, N.; Mendiratta, N.; Gupta, A. Indian sugarcane under warming climate: A simulation study. Eur. J. Agron. 2023, 144, 126760. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus. Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Schubert, S.; Wang, H.; Suarez, M. Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves. J. Clim. 2011, 24, 4773–4792. [Google Scholar] [CrossRef]
- Requia, W.J.; Alahmad, B.; Schwartz, J.D.; Koutrakis, P. Association of low and high ambient temperature with mortality for cardiorespiratory diseases in Brazil. Environ. Res. 2023, 234, 116532. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Li, H.; He, Y.; Ouyang, Z.; Fu, S.; Zhao, Y.; Wang, D.; Wang, R.; Guan, X. Heat waves accelerate the spread of infectious diseases. Environ. Res. 2023, 231, 116090. [Google Scholar] [CrossRef]
- Cuerdo-Vilches, T.; Díaz, J.; López-Bueno, J.A.; Luna, M.Y.; Navas, M.A.; Mirón, I.J.; Linares, C. Impact of urban heat islands on morbidity and mortality in heat waves: Observational time series analysis of Spain’s five cities. Sci. Total Environ. 2023, 890, 164412. [Google Scholar] [CrossRef]
- Zhang, Y.; Hajat, S.; Zhao, L.; Chen, H.; Cheng, L.; Ren, M.; Gu, K.; Ji, J.S.; Liang, W.; Huang, C. The burden of heatwave-related preterm births and associated human capital losses in China. Nat. Commun. 2022, 13, 7565. [Google Scholar] [CrossRef]
- Chowdhury, S.I.; Wardlaw, I.F. The effect of temperature on kernel development in cereals. Aust. J. Agric. Res. 1978, 29, 205–223. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Zhu, Q.; Ye, P.; Wang, Y.; Duan, L.; He, G.; Er, Y.; Jin, Y.; Ji, C.; Hu, J.; Deng, X.; et al. Heatwaves increase road traffic injury morbidity risk and burden in China and its provinces. Environ. Int. 2024, 188, 108760. [Google Scholar] [CrossRef]
- Oppermann, E.; Brearley, M.; Law, L.; Smith, J.A.; Clough, A.; Zander, K. Heat, health, and humidity in Australia’s monsoon tropics: A critical review of the problematization of ‘heat’ in a changing climate. WIREs Clim. Change 2017, 8, e468. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Increasing Human-Perceived Heat Stress Risks Exacerbated by Urbanization in China: A Comparative Study Based on Multiple Metrics. Earth’s Future 2021, 9, e2020EF001848. [Google Scholar] [CrossRef]
- Nazarian, N.; Lee, J.K.W. Personal assessment of urban heat exposure: A systematic review. Environ. Res. Lett. 2021, 16, 033005. [Google Scholar] [CrossRef]
- Tian, P.; Lu, H.; Li, D.; Guan, Y. Quantifying the effects of meteorological change between neighboring days on human thermal comfort in China. Theor. Appl. Climatol. 2022, 147, 1345–1357. [Google Scholar] [CrossRef]
- Kyaw, A.K.; Hamed, M.M.; Shahid, S. Spatiotemporal changes in Universal Thermal Climate Index over South Asia. Atmos. Res. 2023, 292, 106838. [Google Scholar] [CrossRef]
- Ren, Z.; Fu, Y.; Dong, Y.; Zhang, P.; He, X. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Clim. 2022, 43, 101154. [Google Scholar] [CrossRef]
- Schwingshackl, C.; Sillmann, J.; Vicedo-Cabrera, A.M.; Sandstad, M.; Aunan, K. Heat Stress Indicators in CMIP6: Estimating Future Trends and Exceedances of Impact-Relevant Thresholds. Earth’s Future 2021, 9, e2020EF001885. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K.; Li, K.; Jiang, Z. GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth Syst. Sci. Data 2022, 14, 3273–3292. [Google Scholar] [CrossRef]
- Houmsi, M.R.; Ismail, Z.; Othman, L.K.; Ishak, D.S.M.; Hamed, M.M.; Iqbal, Z.; Syamsunur, D.; Shahid, S. Spatiotemporal changes in Hourly Wet Bulb Globe temperature in Peninsular Malaysia. Stoch. Environ. Res. Risk Assess. 2023, 37, 2327–2347. [Google Scholar] [CrossRef]
- Zare, S.; Shirvan, H.E.; Hemmatjo, R.; Nadri, F.; Jahani, Y.; Jamshidzadeh, K.; Paydar, P. A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather Clim. Extrem. 2019, 26, 100213. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, Z.; Zhou, Z.; Im, E.-S.; Min, S.-K.; Kim, Y.-H.; Kim, Y.; Cha, D.-H.; Ahn, J.-B.; Byun, Y.-H. Amplification of the discrepancy between simplified and physics-based wet-bulb globe temperatures in a warmer climate. Weather Clim. Extrem. 2024, 44, 100677. [Google Scholar] [CrossRef]
- Nie, T.; Lai, D.; Liu, K.; Lian, Z.; Yuan, Y.; Sun, L. Discussion on inapplicability of Universal Thermal Climate Index (UTCI) for outdoor thermal comfort in cold region. Urban Clim. 2022, 46, 101304. [Google Scholar] [CrossRef]
- Li, X.; Luo, M.; Zhao, Y.; Zhang, H.; Ge, E.; Huang, Z.; Wu, S.; Wang, P.; Wang, X.; Tang, Y. A daily high-resolution (1 km) human thermal index collection over the North China Plain from 2003 to 2020. Sci. Data 2023, 10, 634. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, Y.; Yue, S. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Sci. Data 2021, 8, 229. [Google Scholar] [CrossRef]
- Di Napoli, C.; Barnard, C.; Prudhomme, C.; Cloke, H.L.; Pappenberger, F. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. 2021, 8, 2–10. [Google Scholar] [CrossRef]
- Mistry, M.N. A High Spatiotemporal Resolution Global Gridded Dataset of Historical Human Discomfort Indices. Atmosphere 2020, 11, 835. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, M.; Zhao, Y.; Lin, L.; Ge, E.; Yang, Y.; Ning, G.; Cong, J.; Zeng, Z.; Gui, K.; et al. HiTIC-Monthly: A monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020. Earth Syst. Sci. Data 2023, 15, 359–381. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, H.; Li, Q. Study on urban heatwave characteristics and thermal stress scenarios based on China’s heatwave hazard zoning. Urban Clim. 2024, 55, 101957. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.; Zhang, S.; Deng, X. Estimation of Summer Air Temperature over China Using Himawari-8 AHI and Numerical Weather Prediction Data. Adv. Meteorol. 2019, 2019, 2385310. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Q.; Zhang, Z. Near-real-time estimation of global horizontal irradiance from Himawari-8 satellite data. Renew. Energy 2023, 215, 118994. [Google Scholar] [CrossRef]
- Choi, Y.-Y.; Suh, M.-S. Development of Himawari-8/Advanced Himawari Imager (AHI) Land Surface Temperature Retrieval Algorithm. Remote Sens. 2018, 10, 2013. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Gui, K.; Yan, X.; Gao, M.; Luo, M.; Geng, H.; Liao, T.; Li, X.; An, J.; et al. Daily Global Solar Radiation in China Estimated From High-Density Meteorological Observations: A Random Forest Model Framework. Earth Space Sci. 2020, 7, e2019EA001058. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zhu, X.; Shen, X.; Chen, K.; Zhang, Z. Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM. Energy 2024, 296, 131221. [Google Scholar] [CrossRef]
- Wang, Y.; Ling, Y.; Chan, T.O.; Awange, J. High-resolution earthquake-induced landslide hazard assessment in Southwest China through frequency ratio analysis and LightGBM. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103947. [Google Scholar] [CrossRef]
- Wang, D.-n.; Li, L.; Zhao, D. Corporate finance risk prediction based on LightGBM. Inf. Sci. 2022, 602, 259–268. [Google Scholar] [CrossRef]
- Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Wang, D.; Yoo, C.; Liu, H. Incorporating temporal multi-head self-attention convolutional networks and LightGBM for indoor air quality prediction. Appl. Soft Comput. 2024, 157, 111569. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, R.; Xu, J.; Yu, Z. MERRA-2 PM2.5 mass concentration reconstruction in China mainland based on LightGBM machine learning. Sci. Total Environ. 2022, 827, 154363. [Google Scholar] [CrossRef]
- Su, H.; Wang, A.; Zhang, T.; Qin, T.; Du, X.; Yan, X.-H. Super-resolution of subsurface temperature field from remote sensing observations based on machine learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102440. [Google Scholar] [CrossRef]
- Łoś, H.; Mendes, G.S.; Cordeiro, D.; Grosso, N.; Costa, H.; Benevides, P.; Caetano, M. Evaluation of Xgboost and Lgbm Performance in Tree Species Classification with Sentinel-2 Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5803–5806. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Steadman, R.G. A Universal Scale of Apparent Temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatiry Response. 1972. Available online: https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/37901/1/13Suppl_21-36.pdf (accessed on 18 September 2025).
- Anderson, G.B.; Bell Michelle, L.; Peng Roger, D. Methods to Calculate the Heat Index as an Exposure Metric in Environmental Health Research. Environ. Health Perspect. 2013, 121, 1111–1119. [Google Scholar] [CrossRef]
- Masterton, J.M.; Richardson, F.A. Humidex; a Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity; Environment Canada, Atmospheric Environment: Downsview, ON, Canada, 1979. [Google Scholar]
- Moran, D.S.; Laor, A.; Epstein, Y.; Shapiro, Y. A MODIFIED DISCOMFORT INDEX (MDI) AS A SUBSTITUTE FOR THE WET BULB GLOBE TEMPERATURE (WBGT). Med. Sci. Sports Exerc. 1998, 30, 284. [Google Scholar] [CrossRef]
- Houghten, F.C. Determining lines of equal comfort. ASHVE Trans. 1923, 29, 163–175. [Google Scholar]
- Willett, K.M.; Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 2012, 32, 161–177. [Google Scholar] [CrossRef]
- Stull, R. Wet-Bulb Temperature from Relative Humidity and Air Temperature. J. Appl. Meteorol. Climatol. 2011, 50, 2267–2269. [Google Scholar] [CrossRef]
- Osczevski, R.; Bluestein, M. THE NEW WIND CHILL EQUIVALENT TEMPERATURE CHART. Bull. Am. Meteorol. Soc. 2005, 86, 1453–1458. [Google Scholar] [CrossRef]
Data Types | Abbreviation | Content | Unit |
---|---|---|---|
Virtual variable | Lat | Latitude | ° |
Lon | Longitude | ° | |
Alti | Altitude | m | |
Mon | Month of year | - | |
Day | Day of year | - | |
Hour | Hour of year | - | |
Himawari-8 | Tbb_11 | Brightness temperature (Band 11) | K |
Tbb_13 | Brightness temperature (Band 13) | K | |
Tbb_14 | Brightness temperature (Band 14) | K | |
Tbb_15 | Brightness temperature (Band 15) | K | |
ERA5-land | PRS | Surface pressure | Pa |
V | Wind speed | m/s | |
SKT | Skin temperature | K | |
SSR | Surface net solar radiation | J/m2 | |
STR | Surface net thermal radiation | J/m2 | |
SSRD | Surface solar radiation downwards | J/m2 | |
STRD | Surface thermal radiation downwards | J/m2 | |
E | Total evaporation | m (water equivalent) |
Indices | Site-Based | Time-Based | Sample-Based | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model CV | Model Tested | Model CV | Model Tested | Model CV | Model Tested | |||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
ATin | 0.976 | 1.282 | 0.976 | 1.504 | 0.987 | 1.168 | 0.984 | 1.272 | 0.987 | 1.176 | 0.986 | 1.179 |
ATout | 0.969 | 1.556 | 0.969 | 1.846 | 0.986 | 1.317 | 0.983 | 1.428 | 0.986 | 1.328 | 0.985 | 1.325 |
DI | 0.978 | 1.056 | 0.978 | 1.221 | 0.988 | 0.957 | 0.985 | 1.030 | 0.988 | 0.964 | 0.987 | 0.963 |
ET | 0.950 | 1.161 | 0.950 | 1.228 | 0.968 | 1.019 | 0.964 | 1.070 | 0.967 | 1.026 | 0.967 | 1.025 |
HI | 0.961 | 1.368 | 0.961 | 1.556 | 0.978 | 1.252 | 0.973 | 1.343 | 0.978 | 1.261 | 0.976 | 1.257 |
HMI | 0.968 | 1.331 | 0.968 | 1.573 | 0.985 | 1.177 | 0.980 | 1.299 | 0.985 | 1.187 | 0.982 | 1.187 |
MDI | 0.978 | 1.195 | 0.978 | 1.350 | 0.987 | 1.099 | 0.985 | 1.165 | 0.987 | 1.105 | 0.987 | 1.102 |
NET | 0.920 | 2.302 | 0.920 | 2.715 | 0.984 | 1.334 | 0.979 | 1.435 | 0.984 | 1.343 | 0.982 | 1.342 |
sWBGT | 0.967 | 0.778 | 0.967 | 0.901 | 0.983 | 0.702 | 0.978 | 0.768 | 0.983 | 0.708 | 0.981 | 0.707 |
TEM | 0.967 | 1.350 | 0.976 | 1.137 | 0.983 | 1.215 | 0.978 | 1.331 | 0.983 | 1.227 | 0.981 | 1.226 |
WBT | 0.980 | 1.998 | 0.979 | 1.146 | 0.988 | 0.922 | 0.986 | 0.971 | 0.988 | 0.927 | 0.987 | 0.925 |
WCT | 0.939 | 2.211 | 0.939 | 2.442 | 0.978 | 1.556 | 0.973 | 1.679 | 0.978 | 1.567 | 0.976 | 1.564 |
Indices | Model Fitted | Model CV | Model Tested | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | |
ATin | 0.987 | 1.126 | 0.846 | 0.987 | 1.176 | 0.879 | 0.986 | 1.176 | 0.882 |
ATout | 0.986 | 1.268 | 0.953 | 0.986 | 1.328 | 0.993 | 0.985 | 1.325 | 0.992 |
DI | 0.988 | 0.923 | 0.694 | 0.988 | 0.964 | 0.721 | 0.987 | 0.963 | 0.721 |
ET | 0.967 | 1.018 | 0.763 | 0.967 | 1.026 | 0.768 | 0.967 | 1.025 | 0.768 |
HI | 0.978 | 1.207 | 0.916 | 0.978 | 1.261 | 0.953 | 0.976 | 1.257 | 0.951 |
HMI | 0.985 | 1.111 | 0.829 | 0.985 | 1.187 | 0.879 | 0.983 | 1.187 | 0.879 |
MDI | 0.987 | 1.078 | 0.816 | 0.987 | 1.105 | 0.834 | 0.987 | 1.102 | 0.832 |
NET | 0.984 | 1.273 | 0.951 | 0.984 | 1.343 | 0.995 | 0.982 | 1.342 | 0.994 |
sWBGT | 0.983 | 0.675 | 0.504 | 0.983 | 0.708 | 0.526 | 0.981 | 0.707 | 0.525 |
TEM | 0.983 | 1.169 | 0.875 | 0.983 | 1.227 | 0.912 | 0.981 | 1.226 | 0.912 |
WBT | 0.988 | 0.906 | 0.690 | 0.988 | 0.927 | 0.704 | 0.987 | 0.925 | 0.704 |
WCT | 0.978 | 1.525 | 1.136 | 0.978 | 1.567 | 1.164 | 0.976 | 1.564 | 1.161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, H.; Li, Z.; Liu, Z.; Zeng, Z. Satellite-Ground Data Fusion for Hourly 5-km Gridded Human-Perceived Temperature Estimation in the Yangtze River Basin, China. Remote Sens. 2025, 17, 3260. https://doi.org/10.3390/rs17183260
Ke H, Li Z, Liu Z, Zeng Z. Satellite-Ground Data Fusion for Hourly 5-km Gridded Human-Perceived Temperature Estimation in the Yangtze River Basin, China. Remote Sensing. 2025; 17(18):3260. https://doi.org/10.3390/rs17183260
Chicago/Turabian StyleKe, Huabing, Zhongyuan Li, Zhaohua Liu, and Zhaoliang Zeng. 2025. "Satellite-Ground Data Fusion for Hourly 5-km Gridded Human-Perceived Temperature Estimation in the Yangtze River Basin, China" Remote Sensing 17, no. 18: 3260. https://doi.org/10.3390/rs17183260
APA StyleKe, H., Li, Z., Liu, Z., & Zeng, Z. (2025). Satellite-Ground Data Fusion for Hourly 5-km Gridded Human-Perceived Temperature Estimation in the Yangtze River Basin, China. Remote Sensing, 17(18), 3260. https://doi.org/10.3390/rs17183260