Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces
Abstract
Highlights
- Unplanned social interactions between people are detectable in spatio-temporal lidar streams with 86.1% precision.
- These social interactions are related to but spatially and temporally distinct from simple measures of occupancy.
- These methods can be used for post-occupancy evaluation of indoor spaces designed to facilitate social interaction.
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Algorithm Performance
3.2. Temporal Analysis
3.3. Spatial Analysis
4. Discussion
Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zlatanova, S.; Sithole, G.; Nakagawa, M.; Zhu, Q. Problems in Indoor Mapping and Modelling. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, XL-4/W4, 63–68. [Google Scholar] [CrossRef]
- Sithole, G.; Zlatanova, S. Position, Location, Place and Area: An Indoor Perspective. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, III–4, 89–96. [Google Scholar] [CrossRef]
- Chen, J.; Clarke, K.C. Indoor Cartography. Cartogr. Geogr. Inf. Sci. 2020, 47, 95–109. [Google Scholar] [CrossRef]
- Villarreal, M.; Baird, T.D.; Tarazaga, P.A.; Kniola, D.J.; Pingel, T.J.; Sarlo, R. Shared Space and Resource Use within a Building Environment: An Indoor Geography. Geogr. J. 2025, 191, e12604. [Google Scholar] [CrossRef]
- Chan, T.H.; Hesse, H.; Ho, S.G. LiDAR-Based 3D SLAM for Indoor Mapping. In Proceedings of the 2021 7th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 23–26 April 2021; pp. 285–289. [Google Scholar]
- Ding, Y.; Zheng, X.; Zhou, Y.; Xiong, H.; Gong, J. Low-Cost and Efficient Indoor 3D Reconstruction through Annotated Hierarchical Structure-from-Motion. Remote Sens. 2018, 11, 58. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.M.; Torres-Sospedra, J.; Huerta, J. A Meta-Review of Indoor Positioning Systems. Sensors 2019, 19, 4507. [Google Scholar] [CrossRef]
- Al-Ammar, M.A.; Alhadhrami, S.; Al-Salman, A.; Alarifi, A.; Al-Khalifa, H.S.; Alnafessah, A.; Alsaleh, M. Comparative Survey of Indoor Positioning Technologies, Techniques, and Algorithms. In Proceedings of the 2014 International Conference on Cyberworlds, Santander, Cantabria, Spain, 6–8 October 2014; pp. 245–252. [Google Scholar]
- Karam, S.; Lehtola, V.; Vosselman, G. Strategies to Integrate IMU and Lidar SLAM for Indoor Mapping. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-1–2020, 223–230. [Google Scholar] [CrossRef]
- Temple, P. From Space to Place: University Performance and Its Built Environment. High Educ. Policy 2009, 22, 209–223. [Google Scholar] [CrossRef]
- Cassidy, C.; Trew, K. Identity Change in Northern Ireland: A Longitudinal Study of Students’ Transition to University. J. Soc. Issues 2004, 60, 523–540. [Google Scholar] [CrossRef]
- Chow, K.; Healey, M. Place Attachment and Place Identity: First-Year Undergraduates Making the Transition from Home to University. J. Environ. Psychol. 2008, 28, 362–372. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Place: An Experiential Perspective. Geogr. Rev. 1975, 65, 151. [Google Scholar] [CrossRef]
- Sandstrom, G.M.; Dunn, E.W. Social Interactions and Well-Being: The Surprising Power of Weak Ties. Pers. Soc. Psychol. Bull. 2014, 40, 910–922. [Google Scholar] [CrossRef]
- Irving, G.L.; Ayoko, O.B.; Ashkanasy, N.M. Collaboration, Physical Proximity and Serendipitous Encounters: Avoiding Collaboration in a Collaborative Building. Organ. Stud. 2020, 41, 1123–1146. [Google Scholar] [CrossRef]
- Björneborn, L. Three Key Affordances for Serendipity: Toward a Framework Connecting Environmental and Personal Factors in Serendipitous Encounters. J. Doc. 2017, 73, 1053–1081. [Google Scholar] [CrossRef]
- Brown, C.; Efstratiou, C.; Leontiadis, I.; Quercia, D.; Mascolo, C. Tracking Serendipitous Interactions: How Individual Cultures Shape the Office. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15–19 February 2014; ACM: New York, NY, USA, 2014; pp. 1072–1081. [Google Scholar]
- Pennington, K.E. Hey, Maybe You Can Help Me with This: Chance Encounters, Geographic Proximity, and Innovative Collaboration. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2021. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; 7. Print; Project for Public Spaces: New York, NY, USA, 2010; ISBN 978-0-9706324-1-8. [Google Scholar]
- Otsuka, K.; Mukawa, N. Multiview Occlusion Analysis for Tracking Densely Populated Objects Based on 2-D Visual Angles. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, Washington, DC, USA, 27 June–2 July 2004; Volume 1, pp. 90–97. [Google Scholar]
- Teixeira, T.; Dublon, G.; Savvides, A. A Survey of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity; ENALAB, Yale University: New Haven, CT, USA, 2010; pp. 1–41. [Google Scholar]
- He, Y.; Wei, X.; Hong, X.; Shi, W.; Gong, Y. Multi-Target Multi-Camera Tracking by Tracklet-to-Target Assignment. IEEE Trans. Image Process. 2020, 29, 5191–5205. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Robot. Automat. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transport. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Tiozzo Fasiolo, D.; Maset, E.; Scalera, L.; Macaulay, S.O.; Gasparetto, A.; Fusiello, A. Combing Lidar SLAM and Deep Learning-Based People Detection for Autonomous Indoor Mapping in a Crowded Environment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B1-2022, 447–452. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, Z.; Chen, A.; Zhou, X.; Ni, H.; Zhang, S.; Li, P.; Liu, L.; Zheng, M.; Chen, X. Evaluating Modern Approaches in 3D Scene Reconstruction: NeRF vs. Gaussian-Based Methods. In Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), Hangzhou, China, 16–18 August 2024; pp. 926–931. [Google Scholar]
- Ying, Y.; Koeva, M.; Kuffer, M.; Zevenbergen, J. Toward 3D Property Valuation—A Review of Urban 3D Modelling Methods for Digital Twin Creation. ISPRS Int. J. Geo-Inf. 2022, 12, 2. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, Use Cases, Challenges, and Opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Kang, Z.; Yang, J.; Yang, Z.; Cheng, S. A Review of Techniques for 3D Reconstruction of Indoor Environments. ISPRS Int. J. Geo-Inf. 2020, 9, 330. [Google Scholar] [CrossRef]
- Rogers, S.R.; Manning, I.; Livingstone, W. Comparing the Spatial Accuracy of Digital Surface Models from Four Unoccupied Aerial Systems: Photogrammetry Versus LiDAR. Remote Sens. 2020, 12, 2806. [Google Scholar] [CrossRef]
- Storch, M.; Kisliuk, B.; Jarmer, T.; Waske, B.; De Lange, N. Comparative Analysis of UAV-Based LiDAR and Photogrammetric Systems for the Detection of Terrain Anomalies in a Historical Conflict Landscape. Sci. Remote Sens. 2025, 11, 100191. [Google Scholar] [CrossRef]
- Borrega, P.L.; Felisilda, Y.A.; Sarmiento, C.J.; Tamondong, A. 3D Reconstruction of the Fort Santiago Dungeons Using Handheld Laser Scanning Method. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-4/W8-2023, 69–75. [Google Scholar] [CrossRef]
- Antova, G. Portable Laser Scanning Solutions for 3D Modelling of Large Buildings. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-4/W10-2024, 13–19. [Google Scholar] [CrossRef]
- Kelly, C.; Mao, O.; Gamlich, V.; Kirkpatrick, R. Assessment of Slam Lidar—An Accuracy Assessment and Drift Anaylsis of the Leica BLK2GO. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6404–6407. [Google Scholar]
- Royo, S.; Ballesta-Garcia, M. An Overview of Lidar Imaging Systems for Autonomous Vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef]
- Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications. IEEE Sens. J. 2020, 20, 4901–4913. [Google Scholar] [CrossRef]
- Vitols, G.; Bumanis, N.; Arhipova, I.; Meirane, I. LiDAR and Camera Data for Smart Urban Traffic Monitoring: Challenges of Automated Data Capturing and Synchronization. In Applied Informatics; Florez, H., Pollo-Cattaneo, M.F., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 1455, pp. 421–432. ISBN 978-3-030-89653-9. [Google Scholar]
- Zhang, Z.; Zheng, J.; Xu, H.; Wang, X. Vehicle Detection and Tracking in Complex Traffic Circumstances with Roadside LiDAR. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 62–71. [Google Scholar] [CrossRef]
- Gómez, J.; Aycard, O.; Baber, J. Efficient Detection and Tracking of Human Using 3D LiDAR Sensor. Sensors 2023, 23, 4720. [Google Scholar] [CrossRef] [PubMed]
- Triess, L.T.; Dreissig, M.; Rist, C.B.; Marius Zollner, J. A Survey on Deep Domain Adaptation for LiDAR Perception. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Nagoya, Japan, 11–17 July 2021; pp. 350–357. [Google Scholar]
- Dreissig, M.; Scheuble, D.; Piewak, F.; Boedecker, J. Survey on LiDAR Perception in Adverse Weather Conditions. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–8. [Google Scholar]
- Li, X.; Zhou, Y.; Hua, B. Study of a Multi-Beam LiDAR Perception Assessment Model for Real-Time Autonomous Driving. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Marrón-Romera, M.; García, J.C.; Sotelo, M.A.; Pizarro, D.; Mazo, M.; Cañas, J.M.; Losada, C.; Marcos, Á. Stereo Vision Tracking of Multiple Objects in Complex Indoor Environments. Sensors 2010, 10, 8865–8887. [Google Scholar] [CrossRef]
- Benezeth, Y.; Emile, B.; Laurent, H.; Rosenberger, C. Vision-Based System for Human Detection and Tracking in Indoor Environment. Int. J. Soc. Robot. 2010, 2, 41–52. [Google Scholar] [CrossRef]
- Kadam, P.; Fang, G.; Zou, J.J. Object Tracking Using Computer Vision: A Review. Computers 2024, 13, 136. [Google Scholar] [CrossRef]
- Karki, S.; Pingel, T.J.; Baird, T.D.; Flack, A.; Ogle, T. Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods. Remote Sens. 2024, 16, 3453. [Google Scholar] [CrossRef]
- Gunter, A.; Boker, S.; Konig, M.; Hoffmann, M. Privacy-Preserving People Detection Enabled by Solid State LiDAR. In Proceedings of the 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 20–23 July 2020; pp. 1–4. [Google Scholar]
- Obanawa, H.; Yoshitoshi, R.; Watanabe, N.; Sakanoue, S. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods. Sensors 2020, 20, 4809. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Hasheminasab, S.M.; Habib, A. Tightly-Coupled Camera/LiDAR Integration for Point Cloud Generation from GNSS/INS-Assisted UAV Mapping Systems. ISPRS J. Photogramm. Remote Sens. 2021, 180, 336–356. [Google Scholar] [CrossRef]
- Meng, X.; Wang, L.; Silván-Cárdenas, J.L.; Currit, N. A Multi-Directional Ground Filtering Algorithm for Airborne LIDAR. ISPRS J. Photogramm. Remote Sens. 2009, 64, 117–124. [Google Scholar] [CrossRef]
- Mountain, D.; Raper, J. Modelling Human Spatio-Temporal Behaviour: A Challenge for Location-Based Services. In Proceedings of the Proceedings of 6th International Conference on Geocomputation, Brisbane, Australia, 24–26 September 2001; pp. 24–26. [Google Scholar]
- Doyle-Baker, P.K.; Ladle, A.; Rout, A.; Galpern, P. Smartphone GPS Locations of Students’ Movements to and from Campus. ISPRS Int. J. Geo-Inf. 2021, 10, 517. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Shan, J. An Initial Study on College Students’ Daily Activities Using GPS Trajectories. In Proceedings of the 2015 23rd International Conference on Geoinformatics, Wuhan, China, 19–21 June 2015; pp. 1–6. [Google Scholar]
- Zenk, S.N.; Schulz, A.J.; Matthews, S.A.; Odoms-Young, A.; Wilbur, J.; Wegrzyn, L.; Gibbs, K.; Braunschweig, C.; Stokes, C. Activity Space Environment and Dietary and Physical Activity Behaviors: A Pilot Study. Health Place 2011, 17, 1150–1161. [Google Scholar] [CrossRef]
- Korpilo, S.; Virtanen, T.; Lehvävirta, S. Smartphone GPS Tracking—Inexpensive and Efficient Data Collection on Recreational Movement. Landsc. Urban Plan. 2017, 157, 608–617. [Google Scholar] [CrossRef]
- Hägerstraand, T. What about People in Regional Science? Pap. Reg. Sci. 1970, 24, 7–21. [Google Scholar] [CrossRef]
- Goulias, K.G. Travel Behavior Models. In Handbook of Behavioral and Cognitive Geography; Montello, D.R., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2018; pp. 56–73. ISBN 978-1-78471-754-4. [Google Scholar]
- Miller, H.J. Modelling Accessibility Using Space-Time Prism Concepts within Geographical Information Systems. Int. J. Geogr. Inf. Syst. 1991, 5, 287–301. [Google Scholar] [CrossRef]
- Kwan, M.-P. Gender and Individual Access to Urban Opportunities: A Study Using Space–Time Measures. Prof. Geogr. 1999, 51, 211–227. [Google Scholar] [CrossRef]
- Kwan, M.-P. Interactive Geovisualization of Activity-Travel Patterns Using Three-Dimensional Geographical Information Systems: A Methodological Exploration with a Large Data Set. Transp. Res. Part C Emerg. Technol. 2000, 8, 185–203. [Google Scholar] [CrossRef]
- Kwan, M. Gis Methods in Time-geographic Research: Geocomputation and Geovisualization of Human Activity Patterns. Geogr. Ann. Ser. B Hum. Geogr. 2004, 86, 267–280. [Google Scholar] [CrossRef]
- Kraak, M.-J. The Space-Time Cube Revisited from a Geovisualization Perspective. In Proceedings of the 21st international Cartographic Conference, ICC 2003: Cartographic Renaissance, Durban, South Africa, 10–16 August 2003; International Cartographic Association: Bern, Switzerland, 2003; pp. 1988–1996. [Google Scholar]
- Graser, A. MovingPandas: Efficient Structures for Movement Data in Python. GIForum 2019, 1, 54–68. [Google Scholar] [CrossRef]
- Martin, H.; Hong, Y.; Wiedemann, N.; Bucher, D.; Raubal, M. Trackintel: An Open-Source Python Library for Human Mobility Analysis. Comput. Environ. Urban Syst. 2023, 101, 101938. [Google Scholar] [CrossRef]
- Esri An Overview of the Space Time Pattern Mining Toolbox 2025. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/an-overview-of-the-space-time-pattern-mining-toolbox.htm (accessed on 11 June 2025).
- Battersby, S. Generating Network Paths from High Volume Movement Data 2023. Available online: https://community.esri.com/t5/geoanalytics-engine-blog/generating-network-paths-from-high-volume-movement/ba-p/1318105 (accessed on 11 June 2025).
- Baird, T.D.; Tural, E.; Kniola, D.; Pingel, T.; Abaid, N. Building as common property: Examining Ostrom’s model in an innovative university residence hall. Build. Res. Inf. 2025; in review. [Google Scholar]
- Lewis, P. Defining a Sense of Place. South. Q. 1979, 17, 24–32. [Google Scholar]
- Shamai, S. Sense of Place: An Empirical Measurement. Geoforum 1991, 22, 347–358. [Google Scholar] [CrossRef]
- Shamai, S.; Ilatov, Z. Measuring Sense of Place: Methodological Aspects. Tijdschr. Econ. Soc. Geogr. 2005, 96, 467–476. [Google Scholar] [CrossRef]
- Gillespie, J.; Cosgrave, C.; Malatzky, C.; Carden, C. Sense of Place, Place Attachment, and Belonging-in-Place in Empirical Research: A Scoping Review for Rural Health Workforce Research. Health Place 2022, 74, 102756. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Space and Place: Humanistic Perspective. In Philosophy in Geography; Gale, S., Olsson, G., Eds.; Springer: Dordrecht, The Netherlands, 1979; pp. 387–427. ISBN 978-94-009-9396-9. [Google Scholar]
- Tuan, Y. Space and Place: The Perspective of Experience, 2nd ed.; University of Minnesota Press: Minneapolis, MN, USA, 2001; ISBN 978-0-8166-3877-2. [Google Scholar]
- Agarwal, P. Place. In Handbook of Behavioral and Cognitive Geography; Montello, D.R., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2018; pp. 291–306. ISBN 978-1-78471-754-4. [Google Scholar]
- Rollero, C.; De Piccoli, N. Does Place Attachment Affect Social Well-Being? Eur. Rev. Appl. Psychol. 2010, 60, 233–238. [Google Scholar] [CrossRef]
- Thomas, L.; Orme, E.; Kerrigan, F. Student Loneliness: The Role of Social Media Through Life Transitions. Comput. Educ. 2020, 146, 103754. [Google Scholar] [CrossRef]
- Virginia Tech Creativity and Innovation District Living–Learning Program Residence Hall 2023. Available online: https://facilities.vt.edu/content/facilities_vt_edu/en/planning-financing/campus-construction-projects/facilities-CID.html (accessed on 11 June 2025).
- Blickfeld GmbH Cube 1—3D LiDAR Sensor 2025. Available online: https://www.blickfeld.com/lidar-sensor-products/cube-1/ (accessed on 8 June 2025).
- Chen, J. Grid Referencing of Buildings; ETH Zurich: Zürich, Switzerland, 2018. [Google Scholar] [CrossRef]
- Blickfeld GmbH Blickfeld Percept—LiDAR Perception Software 2022. Available online: https://www.blickfeld.com/lidar-sensor-products/percept/ (accessed on 8 June 2025).
- Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Mahajan, T.; Singh, G.; Bruns, G. An Experimental Assessment of Treatments for Cyclical Data. Master’s Thesis, California State University Channel Islands, Channel Islands, CA, USA, 2021. [Google Scholar]
- Cöltekin, A.; De Sabbata, S.; Willi, C.; Vontobel, I.; Pfister, S.; Kuhn, M.; Lacayo, M. Modifiable temporal unit problem. In Persistent Problems in Geographic Visualization; ICC2011 Workshop: Paris, France, 2011; Available online: http://geoanalytics.net/ica/icc2011/coltekin.pdf (accessed on 8 June 2025).
- Openshaw, S. The Modifiable Areal Unit Problem; Concepts and Techniques in Modern Geography; Geo Books: Norwich, UK, 1983; ISBN 0-86094-134-5. [Google Scholar]
- Harari, G.M.; Müller, S.R.; Stachl, C.; Wang, R.; Wang, W.; Bühner, M.; Rentfrow, P.J.; Campbell, A.T.; Gosling, S.D. Sensing Sociability: Individual Differences in Young Adults’ Conversation, Calling, Texting, and App Use Behaviors in Daily Life. J. Personal. Soc. Psychol. 2020, 119, 204–228. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Vroman, L.; Lagrange, T. Human Movement in Public Spaces: The Use and Development of Motion-Oriented Design Strategies. Des. J. 2017, 20, S3252–S3261. [Google Scholar] [CrossRef][Green Version]
Parameter | Setting |
---|---|
Dynamic Background | Mixture of Gaussians |
Initialization Frames | 10 |
Exponential Decay | 0.005 |
Minimum Weight Threshold | 0.17 |
Minimum # of Neighbor Points | 3 |
Neighbor Radius | 0.5 m |
Point Clustering Method | Mean Shift |
Minimum Points for a Cluster | 30 |
Average Radius of Objects | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flack, A.H.; Pingel, T.J.; Baird, T.D.; Karki, S.; Abaid, N. Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces. Remote Sens. 2025, 17, 3236. https://doi.org/10.3390/rs17183236
Flack AH, Pingel TJ, Baird TD, Karki S, Abaid N. Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces. Remote Sensing. 2025; 17(18):3236. https://doi.org/10.3390/rs17183236
Chicago/Turabian StyleFlack, Addison H., Thomas J. Pingel, Timothy D. Baird, Shashank Karki, and Nicole Abaid. 2025. "Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces" Remote Sensing 17, no. 18: 3236. https://doi.org/10.3390/rs17183236
APA StyleFlack, A. H., Pingel, T. J., Baird, T. D., Karki, S., & Abaid, N. (2025). Lidar-Based Detection and Analysis of Serendipitous Collisions in Shared Indoor Spaces. Remote Sensing, 17(18), 3236. https://doi.org/10.3390/rs17183236