Examining the Characteristics of Drought Resistance Under Different Types of Extreme Drought in Inner Mongolia Grassland, China
Abstract
Highlights
- Meadow and desert regions exhibited relatively higher resistance, while steppes showed lower resistance, possibly influenced by their climatic zones.
- Grassland has been significantly inhibited by two-year continuous extreme drought, while exhibited varying degrees of increased resistance to discontinuous extreme drought.
- The management departments should pay more attention to central regions where low-resistance steppe grasslands are distributed, while striving to maintain ecosys-tem stability in western and eastern regions with high resistance.
- By increasing the proportion of drought-resistant plants may be an effective way in reaction to future extreme drought scenarios.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Data Processing
2.2.1. SPEI Data
2.2.2. NPP Data
2.2.3. Meteorological Data
2.3. Grassland Drought Resistance Calculation
2.4. Statistical Analysis Method
2.5. Research Framework
3. Results
3.1. Characteristics of Resistance Under One-Year Extreme Drought
3.1.1. Spatial and Temporal Distribution of Area Under Different Climate Categories
3.1.2. Characteristics of Resistance to One-Year Extreme Drought
3.2. Characteristics of Resistance in Areas Under Two-Year Continuous Extreme Drought
3.2.1. Distribution Characteristics of Two-Year Continuous Extreme Drought
3.2.2. Characteristics of Resistance to Two-Year Continuous Extreme Drought
3.3. Characteristics of Resistance in Areas Under Discontinuous Extreme Drought
3.3.1. Eastern Part of Inner Mongolia
3.3.2. Central Part of Inner Mongolia
3.3.3. Western Part of Inner Mongolia
4. Discussion
4.1. Characteristics of Extreme Drought Resistance from 2000 to 2020
4.2. Characteristics of Resistance in Different Grassland Types
4.2.1. One-Year Extreme Drought
4.2.2. Two-Year Continuous Extreme Drought
4.2.3. Discontinuous Extreme Drought
4.3. Factors Influencing Resistance Under Extreme Drought
5. Conclusions
- Meadow and desert regions exhibited relatively high resistance (0.77~0.84), while steppes showed lower resistance (0.71~0.74), possibly influenced by their climatic zones.
- Continuous drought generally hinders grassland growth, as evidenced by all grassland types experiencing a decline in resistance in the final year compared to the initial, except TSD and TD.
- Grassland that experienced discontinuous extreme drought exhibited varying degrees of increased resistance. During the final extreme drought events across the respective regions, all grassland types in the eastern regions demonstrated resistance exceeding 1.0, while central areas surpassed 0.8 and western zones maintained values above 0.7, which bodes well for enhancing vegetation stability under future extreme droughts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, S.K.; Tang, F.L.; Ping, X.Y.; Yang, X.C.; Yang, Z.; Lin, C.C.; Lu, X.S.; Wang, T.M.; Ji, B.M.; Xu, B.; et al. Zoning and functions of China’s grassland in the New Era of ecological civilization. J. Nat. Resour. 2022, 37, 568–581. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO(2) sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Ault, T.R. On the essentials of drought in a changing climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Pendall, E.; Ciais, P. Focus on extreme events and the carbon cycle. Environ. Res. Lett. 2015, 10, 070201. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef]
- Beloiu, M.; Stahlmann, R.; Beierkuhnlein, C. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. For. Ecol. Manag. 2022, 509, 120075. [Google Scholar] [CrossRef]
- Hossain, M.L.; Li, J. Biomass partitioning of C3- and C4-dominated grasslands in response to climatic variability and climate extremes. Environ. Res. Lett. 2021, 16, 074016. [Google Scholar] [CrossRef]
- Ingrisch, J.; Bahn, M. Towards a Comparable Quantification of Resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Macgillivray, C.W.; Grime, J.P.; Band, S.R.; Booth, R.E.; Campbell, B.; Hendry, G.A.F.; Hillier, S.H.; Hodgson, J.G.; Hunt, R.; Jalili, A.; et al. Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events. Funct. Ecol. 1995, 9, 640–649. [Google Scholar] [CrossRef]
- Grilli, J.; Barabas, G.; Michalska-Smith, M.J.; Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 2017, 548, 210–213. [Google Scholar] [CrossRef]
- Stuart-Haentjens, E.; De Boeck, H.J.; Lemoine, N.P.; Mand, P.; Kroel-Dulay, G.; Schmidt, I.K.; Jentsch, A.; Stampfli, A.; Anderegg, W.R.L.; Bahn, M.; et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 2018, 636, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.L.; Knapp, A.K.; Smith, M.D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 2014, 95, 2646–2656. [Google Scholar] [CrossRef]
- Vandegeer, R.K.; Tissue, D.T.; Hartley, S.E.; Glauser, G.; Johnson, S.N. Physiological acclimation of a grass species occurs during sustained but not repeated drought events. Environ. Exp. Bot. 2020, 171, 103954. [Google Scholar] [CrossRef]
- Hoover, D.L.; Hajek, O.L.; Smith, M.D.; Wilkins, K.; Slette, I.J.; Knapp, A.K. Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge, and the carbon cycle. Glob. Change Biol. 2022, 28, 2611–2621. [Google Scholar] [CrossRef]
- Xu, C.; Ke, Y.; Zhou, W.; Luo, W.; Ma, W.; Song, L.; Smith, M.D.; Hoover, D.L.; Wilcox, K.R.; Fu, W.; et al. Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecol. Indic. 2021, 131, 108139. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Cao, M.; Fu, G.; Xia, J.; Wang, Z.; Li, J. Local climate and biodiversity affect the stability of China’s grasslands response to drought. Sci. Total Environ. 2021, 768, 145482. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; He, Y.; Wu, L.; Niu, B.; Song, M.; Zhang, X. Dimensionality of grassland stability shifts along with altitudes on the Tibetan Plateau. Agric. For. Meteorol. 2020, 291, 108080. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Li, J.; Yu, H.; Chang, L.; Yi, S.; Lv, Y.; Zhang, Y.; Meng, B. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years. Acta Prataculturae Sin. 2023, 32, 1–16. [Google Scholar] [CrossRef]
- Editorial Board of Vegetation Map of China, C.A.o.S. 1:1,000,000 Vegetation Atlas of China; Science Press: Beijing, China, 2001. [Google Scholar]
- Palmer, W. Meteorological Drought; Research Paper; U.S. Department of Commerce Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm1. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Physiol. Biochem. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Konings, A.G.; Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 2020, 10, 1091–1119. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, D.; Wang, X.; Xie, Z. Responding time scales of vegetation production to extreme droughts over China. Ecol. Indic. 2022, 136, 108630. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region. Nat. Hazards 2007, 40, 173–208. [Google Scholar] [CrossRef]
- Xu, P.; Fang, W.; Zhou, T.; Li, H.; Zhao, X.; Berman, S.; Zhang, T.; Yi, C. Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China. Environ. Res. Lett. 2022, 17, 025005. [Google Scholar] [CrossRef]
- Dorman, M.; Svoray, T.; Perevolotsky, A.; Sarris, D. Forest performance during two consecutive drought periods: Diverging long-term trends and short-term responses along a climatic gradient. For. Ecol. Manag. 2013, 310, 1–9. [Google Scholar] [CrossRef]
- Cherwin, K.; Knapp, A. Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 2012, 169, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Maestre, F.T.; Eldridge, D.J.; Soliveres, S.; Kefi, S.; Delgado-Baquerizo, M.; Bowker, M.A.; Garcia-Palacios, P.; Gaitan, J.; Gallardo, A.; Lazaro, R.; et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2024). 2019. Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf (accessed on 29 August 2025).
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2024). 2020. Available online: https://www.tpdc.ac.cn/en/data/faae7605-a0f2-4d18-b28f-5cee413766a2 (accessed on 29 August 2025).
- Lloret, F.; Keeling, E.G.; Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 2011, 120, 1909–1920. [Google Scholar] [CrossRef]
- Gao, S.; Liu, R.S.; Zhou, T.; Fang, W.; Yi, C.X.; Lu, R.J.; Zhao, X.; Luo, H. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 2018, 24, 5380–5390. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021; Cambridge University Press: Singapore, 2021. [Google Scholar]
- Song, Y.; Guo, Z.; Lu, Y.; Yan, D.; Liao, Z.; Liu, H.; Cui, Y. Pixel-Level Spatiotemporal Analyses of Vegetation Fractional Coverage Variation and Its Influential Factors in a Desert Steppe: A Case Study in Inner Mongolia, China. Water 2017, 9, 478. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901-2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef]
- Knapp, A.K.; Carroll, C.J.; Denton, E.M.; La Pierre, K.J.; Collins, S.L.; Smith, M.D. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 2015, 177, 949–957. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Guarnaschelli, A.B.; Prystupa, P.; Lemcoff, J.H. Drought conditioning improves water status, stomatal conductance and survival of Eucalyptus globulus subsp bicostata seedlings. Ann. For. Sci. 2006, 63, 941–950. [Google Scholar] [CrossRef]
- Garnier, E.; Cortez, J.; Billes, G.; Navas, M.L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; Aubry, D.; Bellmann, A.; et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Garnier, E.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Fortunel, C.; Freitas, H.; Golodets, C.; et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 2007, 99, 967–985. [Google Scholar] [CrossRef]
- Wilcox, K.R.; Koerner, S.E.; Hoover, D.L.; Borkenhagen, A.K.; Burkepile, D.E.; Collins, S.L.; Hoffman, A.M.; Kirkman, K.P.; Knapp, A.K.; Strydom, T.; et al. Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland. Ecology 2020, 101, e02983. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef]
- Tielborger, K.; Bilton, M.C.; Metz, J.; Kigel, J.; Holzapfel, C.; Lebrija-Trejos, E.; Konsens, I.; Parag, H.A.; Sternberg, M. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 2014, 5, 5102. [Google Scholar] [CrossRef]
- Ogle, K.; Reynolds, J.F. Plant responses to precipitation in desert ecosystems: Integrating functional types, pulses, thresholds, and delays. Oecologia 2004, 141, 282–294. [Google Scholar] [CrossRef]
Grassland Type | Vegetation Life Form | Dominant Grass Species | Coverage (%) | Group |
---|---|---|---|---|
Upland meadow | Mesophytic perennial grasses | Carex pediformis, Vicia amoena, Sanguisorba officinalis, Calamagrostis epigejos, Bromus inermis | 80–100 | meadow |
Lowland meadow | Mesophytic perennial grasses | Achnatherum splendens, Agrostis gigantea, Suaeda heteropera, Puccinellia tenuiflora | 80–95 | meadow |
Temperate meadow steppe | Mesoxerophytic perennial tufted grasses and root grasses | Stipa baicalensis, Leymus chinensis, Filifolium sibiricum | 70–90 | steppe |
Temperate steppe | Xerophytic perennial tufted grasses, xerophytic short shrubs | Stipa grandis, Stipa krylovii, Stipa bungeana, Cleistogenes squarrosa, Agropyron cristatum, A. frigida, Caragana sinica | 40–70 | steppe |
Temperate desert steppe | Super xerophytic semishrubs, shrubs, and xerophytic grasses | Stipa tianschanica var. klemenzii, Stipa tianschanica var. gobica, Stipa breviflora, Cleistogenes songorica, Artemisia frigida, Allium mongolicum, Allium aflatunense | 30–40 | steppe |
Temperate steppe desert | Super xerophytic semishrubs, shrubs, and xerophytic grasses | Seriphidium gracilescens, Seriphidium terrae-albae, Seriphidium borotalense, Sympegma regelii, Reaumuria soongorica, Anabasis brevifolia, Stipa glareosa | 20–30 | desert |
Temperate desert | Extremely xerophytic short shrubs, short semishrubs | Lyonia ovalifolia, Salsola laricifolia, Reaumuria songarica, Kalidium foliatum, Artemisia desertorum, Psammochloa villosa | 0–20 | desert |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Guo, J.; Yang, X.; Jiang, W.; Gao, W.; Xing, X.; Yang, D.; Zhang, M.; Xu, B. Examining the Characteristics of Drought Resistance Under Different Types of Extreme Drought in Inner Mongolia Grassland, China. Remote Sens. 2025, 17, 3229. https://doi.org/10.3390/rs17183229
Han J, Guo J, Yang X, Jiang W, Gao W, Xing X, Yang D, Zhang M, Xu B. Examining the Characteristics of Drought Resistance Under Different Types of Extreme Drought in Inner Mongolia Grassland, China. Remote Sensing. 2025; 17(18):3229. https://doi.org/10.3390/rs17183229
Chicago/Turabian StyleHan, Jiaqi, Jian Guo, Xiuchun Yang, Weiguo Jiang, Wenwen Gao, Xiaoyu Xing, Dong Yang, Min Zhang, and Bin Xu. 2025. "Examining the Characteristics of Drought Resistance Under Different Types of Extreme Drought in Inner Mongolia Grassland, China" Remote Sensing 17, no. 18: 3229. https://doi.org/10.3390/rs17183229
APA StyleHan, J., Guo, J., Yang, X., Jiang, W., Gao, W., Xing, X., Yang, D., Zhang, M., & Xu, B. (2025). Examining the Characteristics of Drought Resistance Under Different Types of Extreme Drought in Inner Mongolia Grassland, China. Remote Sensing, 17(18), 3229. https://doi.org/10.3390/rs17183229