Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya
Abstract
Highlights
- Wave crest shadows in high-resolution imagery reveal breaking waves in frazil ice–covered polynyas.
- A dedicated filter improves detection of whitecaps, reducing false positives along ice streaks.
- Spatial distribution of breakers reveals the complexity of wave–ice interactions in coastal polynyas.
- Whitecaps’ spatial patterns can locally increase reflectance, mimicking ice in lower-resolution imagery.
Abstract
1. Introduction
2. Materials and Methods
2.1. Area of Interest and the Case Overwiew
2.2. Data
2.3. Detection of Potential Breakers—Data-Processing Scheme
3. Results
3.1. Contrast Analysis and Optimization of Breaker Detection
3.2. Assessing Wave Breaking in Varying Ice Conditions: Method Outcomes and Its Limitations
3.3. Algorithm Robustness with Wind and Fetch Variability
3.4. Brightness of Whitecaps—Implications for Lower-Resolution Data Interpretation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohshima, K.I.; Fukamachi, Y.; Ito, M.; Nakata, K.; Simizu, D.; Ono, K.; Nomura, D.; Hashida, G.; Tamura, T. Dominant Frazil Ice Production in the Cape Darnley Polynya Leading to Antarctic Bottom Water Formation. Sci. Adv. 2022, 8, eadc9174. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S.; Kimura, N.; Tamura, T. Variability and Ice Production Budget in the R Oss I Ce S Helf P Olynya Based on a Simplified Polynya Model and Satellite Observations. J. Geophys. Res. Ocean. 2015, 120, 6234–6252. [Google Scholar] [CrossRef]
- Morales Maqueda, M.A.; Willmott, A.J.; Biggs, N.R.T. Polynya Dynamics: A Review of Observations and Modeling. Rev. Geophys. 2004, 42, 2002RG000116. [Google Scholar] [CrossRef]
- Golledge, N.R.; Keller, E.D.; Gossart, A.; Malyarenko, A.; Bahamondes-Dominguez, A.; Krapp, M.; Jendersie, S.; Lowry, D.P.; Alevropoulos-Borrill, A.; Notz, D. Antarctic Coastal Polynyas in the Global Climate System. Nat. Rev. Earth Environ. 2025, 6, 126–139. [Google Scholar] [CrossRef]
- Ackley, S.F.; Stammerjohn, S.; Maksym, T.; Smith, M.; Cassano, J.; Guest, P.; Tison, J.-L.; Delille, B.; Loose, B.; Sedwick, P.; et al. Sea-Ice Production and Air/Ice/Ocean/Biogeochemistry Interactions in the Ross Sea during the PIPERS 2017 Autumn Field Campaign. Ann. Glaciol. 2020, 61, 181–195. [Google Scholar] [CrossRef]
- Guest, P.S. Inside Katabatic Winds Over the Terra Nova Bay Polynya: 2. Dynamic and Thermodynamic Analyses. J. Geophys. Res. Atmos. 2021, 126, e2021JD034904. [Google Scholar] [CrossRef]
- Herman, A.; Bradtke, K. Fetch-Limited, Strongly Forced Wind Waves in Waters with Frazil and Grease Ice—Spectral Modeling and Satellite Observations in an Antarctic Coastal Polynya. J. Geophys. Res. Ocean. 2024, 129, e2023JC020452. [Google Scholar] [CrossRef]
- Koepke, P. Effective Reflectance of Oceanic Whitecaps. Appl. Opt. 1984, 23, 1816. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Spectral Reflectance of Whitecaps. J. Geophys. Res. 2004, 109, C05021. [Google Scholar] [CrossRef]
- Stramska, M.; Petelski, T. Observations of Oceanic Whitecaps in the North Polar Waters of the Atlantic. J. Geophys. Res. 2003, 108, 3086. [Google Scholar] [CrossRef]
- Callaghan, A.H.; White, M. Automated Processing of Sea Surface Images for the Determination of Whitecap Coverage. J. Atmos. Ocean. Technol. 2009, 26, 383–394. [Google Scholar] [CrossRef]
- Bakhoday-Paskyabi, M.; Reuder, J.; Flügge, M. Automated Measurements of Whitecaps on the Ocean Surface from a Buoy-Mounted Camera. Methods Oceanogr. 2016, 17, 14–31. [Google Scholar] [CrossRef]
- Randolph, K.; Dierssen, H.M.; Cifuentes-Lorenzen, A.; Balch, W.M.; Monahan, E.C.; Zappa, C.J.; Drapeau, D.T.; Bowler, B. Novel Methods for Optically Measuring Whitecaps under Natural Wave-Breaking Conditions in the Southern Ocean. J. Atmos. Ocean. Technol. 2017, 34, 533–554. [Google Scholar] [CrossRef]
- Pivaev, P.; Kudryavtsev, V.; Korinenko, A.; Malinovsky, V. Field Observations of Breaking of Dominant Surface Waves. Remote Sens. 2021, 13, 3321. [Google Scholar] [CrossRef]
- Yang, X.; Potter, H.; Zhang, S.; Lyu, M. Remote Measurement of Active Whitecaps Using Deep Learning. J. Atmos. Ocean. Technol. 2025, 42, 827–842. [Google Scholar] [CrossRef]
- Wang, Y.; Sugihara, Y.; Zhao, X.; Nakashima, H.; Eljamal, O. Deep Learning-Based Image Processing for Whitecaps on the Ocean Surface. J. Jpn. Soc. Civ. Eng. Ser B2 Coast. Eng. 2020, 76, I_163–I_168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lou, X.; Li, Y.; Shi, A.; Li, D.; Fu, B. Whitecap Features Induced by Submarine Sand Waves in Stereo Optical Imagery. J. Geophys. Res. Ocean. 2015, 120, 6225–6233. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Kudryavtsev, V.N.; Stanichny, S.V. Application of Landsat Imagery for the Investigation of Wave Breaking. Remote Sens. Environ. 2021, 253, 112144. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, Y.; Ding, J.; Jiao, J.; Tian, Q. Discrimination of Oceanic Whitecaps Derived by Sea Surface Wind Using Sentinel-2 MSI Images. J. Geophys. Res. Ocean. 2022, 127, e2021JC018208. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, Y. Optical Quantification of Wind-Wave Breaking and Regional Variations in Different Offshore Seas Using Landsat-8 OLI Images. J. Geophys. Res. Atmos. 2025, 130, e2024JD041764. [Google Scholar] [CrossRef]
- Frouin, R.; Iacobellis, S.F.; Deschamps, P.-Y. Influence of Oceanic Whitecaps on the Global Radiation Budget. Geophys. Res. Lett. 2001, 28, 1523–1526. [Google Scholar] [CrossRef]
- Deike, L. Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles. Annu. Rev. Fluid Mech. 2022, 54, 191–224. [Google Scholar] [CrossRef]
- Moore, K.D.; Voss, K.J.; Gordon, H.R. Spectral Reflectance of Whitecaps: Their Contribution to Water-leaving Radiance. J. Geophys. Res. Ocean. 2000, 105, 6493–6499. [Google Scholar] [CrossRef]
- Dierssen, H.M. Hyperspectral Measurements, Parameterizations, and Atmospheric Correction of Whitecaps and Foam From Visible to Shortwave Infrared for Ocean Color Remote Sensing. Front. Earth Sci. 2019, 7, 14. [Google Scholar] [CrossRef]
- Eadi Stringari, C.; Veras Guimarães, P.; Filipot, J.-F.; Leckler, F.; Duarte, R. Deep Neural Networks for Active Wave Breaking Classification. Sci. Rep. 2021, 11, 3604. [Google Scholar] [CrossRef]
- Peach, J.; Callaghan, A.H.; Bergamasco, F.; Pistellato, M.; Barbariol, F.; Benetazzo, A. A Vision-Based Method for Spatial and Temporal Tracking of Individual Whitecaps From Breaking Ocean Waves. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4206615. [Google Scholar] [CrossRef]
- Perovich, D.K. The Optical Properties of Sea Ice; US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1996. [Google Scholar]
- Ma, L.X.; Wang, F.Q.; Wang, C.A.; Wang, C.C.; Tan, J.Y. Investigation of the Spectral Reflectance and Bidirectional Reflectance Distribution Function of Sea Foam Layer by the Monte Carlo Method. Appl. Opt. 2015, 54, 9863. [Google Scholar] [CrossRef]
- Kurtz, D.D.; Bromwich, D.H. A Recurring, Atmospherically Forced Polynya in Terra Nova Bay. In Antarctic Research Series; Jacobs, S., Ed.; American Geophysical Union: Washington, DC, USA, 1985; Volume 43, pp. 177–201. ISBN 978-0-87590-196-1. [Google Scholar]
- Aulicino, G.; Sansiviero, M.; Paul, S.; Cesarano, C.; Fusco, G.; Wadhams, P.; Budillon, G. A New Approach for Monitoring the Terra Nova Bay Polynya through MODIS Ice Surface Temperature Imagery and Its Validation during 2010 and 2011 Winter Seasons. Remote Sens. 2018, 10, 366. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L. High Resolution Observations of the Terra Nova Bay Polynya Using COSMO-SkyMed X-SAR and Other Satellite Imagery. J. Mar. Syst. 2013, 113–114, 42–51. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Q.; Mazloff, M.; Wu, X.; Tian-Kunze, X.; Kaleschke, L.; Yu, L.; Chen, D. Transiting Consolidated Ice Strongly Influenced Polynya Area during a Shrink Event in Terra Nova Bay in 2013. Commun. Earth Environ. 2023, 4, 54. [Google Scholar] [CrossRef]
- Bradtke, K.; Herman, A. Spatial Characteristics of Frazil Streaks in the Terra Nova Bay Polynya from High-Resolution Visible Satellite Imagery. Cryosphere 2023, 17, 2073–2094. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Budillon, G. Observations of the Terra Nova Bay (Antarctica) Polynya by MODIS Ice Surface Temperature Imagery from 2005 to 2010. Remote Sens. Environ. 2012, 119, 158–172. [Google Scholar] [CrossRef]
- Fonseca, R.; Francis, D.; Aulicino, G.; Mattingly, K.S.; Fusco, G.; Budillon, G. Atmospheric Controls on the Terra Nova Bay Polynya Occurrence in Antarctica. Clim. Dyn. 2023, 61, 5147–5169. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, X.; Li, X.; Shokr, M.; Yuan, J.; Yang, Q.; Hui, F. Specific Relationship between the Surface Air Temperature and the Area of the Terra Nova Bay Polynya, Antarctica. Adv. Atmos. Sci. 2020, 37, 532–544. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Kurtz, D.D. Katabatic Wind Forcing of the Terra Nova Bay Polynya. J. Geophys. Res. Ocean. 1984, 89, 3561–3572. [Google Scholar] [CrossRef]
- Stevens, C.; Sang Lee, W.; Fusco, G.; Yun, S.; Grant, B.; Robinson, N.; Yeon Hwang, C. The Influence of the Drygalski Ice Tongue on the Local Ocean. Ann. Glaciol. 2017, 58, 51–59. [Google Scholar] [CrossRef]
- Van Woert, M.L. Wintertime Dynamics of the Terra Nova Bay Polynya. J. Geophys. Res. Ocean. 1999, 104, 7753–7769. [Google Scholar] [CrossRef]
- Thompson, L.; Smith, M.; Thomson, J.; Stammerjohn, S.; Ackley, S.; Loose, B. Frazil Ice Growth and Production during Katabatic Wind Events in the Ross Sea, Antarctica. Cryosphere 2020, 14, 3329–3347. [Google Scholar] [CrossRef]
- Herman, A.; Dojczman, M.; Świszcz, K. High-Resolution Simulations of Interactions between Surface Ocean Dynamics and Frazil Ice. Cryosphere 2020, 14, 3707–3729. [Google Scholar] [CrossRef]
- Powers, J.G.; Manning, K.W.; Bromwich, D.H.; Cassano, J.J.; Cayette, A.M. A Decade of Antarctic Science Support Through Amps. Bull. Am. Meteorol. Soc. 2012, 93, 1699–1712. [Google Scholar] [CrossRef]
- Kääb, A.; Leprince, S. Motion Detection Using Near-Simultaneous Satellite Acquisitions. Remote Sens. Environ. 2014, 154, 164–179. [Google Scholar] [CrossRef]
- Updike, T.; Comp, C. Radiometric Use of WorldView-2 Imagery. Technical Note; DigitalGlobe, Inc.: Westminster, CO, USA, 2010. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 7 January 1998; Narosa Publishing House: Bombay, India, 1998; pp. 839–846. [Google Scholar]
- Haralick, R.M. Ridges and Valleys on Digital Images. Comput. Vis. Graph. Image Process. 1983, 22, 28–38. [Google Scholar] [CrossRef]
- Rosin, P.L. Unimodal Thresholding. Pattern Recognit. 2001, 34, 2083–2096. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Hwang, P.A. Using Energy Dissipation Rate to Obtain Active Whitecap Fraction. J. Phys. Oceanogr. 2016, 46, 461–481. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Webster, F. Whitecap Coverage from Satellite Measurements: A First Step toward Modeling the Variability of Oceanic Whitecaps. J. Geophys. Res. 2006, 111, C03017. [Google Scholar] [CrossRef]
- Brumer, S.E.; Zappa, C.J.; Brooks, I.M.; Tamura, H.; Brown, S.M.; Blomquist, B.W.; Fairall, C.W.; Cifuentes-Lorenzen, A. Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS. J. Phys. Oceanogr. 2017, 47, 2211–2235. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Xiang, S.; Li, J.; Yang, Y.; Tang, X.-S. Dual-Stream Shadow Detection Network: Biologically Inspired Shadow Detection for Remote Sensing Images. Neural Comput. Appl. 2022, 34, 10039–10049. [Google Scholar] [CrossRef]
- Fernandez-Beltran, R.; Guzmán-Ponce, A.; Fernandez, R.; Kang, J.; García-Mateos, G. Shadow Detection Using a Cross-Attentional Dual-Decoder Network with Self-Supervised Image Reconstruction Features. Image Vis. Comput. 2024, 143, 104922. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and Cloud Shadow Detection in Landsat Imagery Based on Deep Convolutional Neural Networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradtke, K.; Brodziński, W.; Herman, A. Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya. Remote Sens. 2025, 17, 3198. https://doi.org/10.3390/rs17183198
Bradtke K, Brodziński W, Herman A. Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya. Remote Sensing. 2025; 17(18):3198. https://doi.org/10.3390/rs17183198
Chicago/Turabian StyleBradtke, Katarzyna, Wojciech Brodziński, and Agnieszka Herman. 2025. "Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya" Remote Sensing 17, no. 18: 3198. https://doi.org/10.3390/rs17183198
APA StyleBradtke, K., Brodziński, W., & Herman, A. (2025). Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya. Remote Sensing, 17(18), 3198. https://doi.org/10.3390/rs17183198