Geospatial Big Data-Driven Fine-Scale Carbon Emission Modeling
Abstract
Highlights
- A bibliometric analysis reveals that the research focus in spatial carbon emission modeling has shifted from early coarse, large-scale accounting to the current emphasis on fine-grained analysis that is sector-specific, high-resolution, and multidimensional. The global commitment to "carbon neutrality" targets has significantly accelerated the application of data-driven methods, particularly machine learning, in this domain.
- A comprehensive literature review indicates that the most prevalent modeling strategy is the hybrid model, which synergistically integrates "top-down" and "bottom-up" approaches. By coupling mechanistic models with machine learning techniques, this method effectively reconciles the global consistency of macro-scale data with the local heterogeneity of micro-scale emission sources, thereby significantly enhancing model accuracy and applicability.
- A key innovation of this review is the explicit identification of geospatial big data—such as nighttime light (NTL) remote sensing, mobile phone signaling, and Points of Interest (POI)—as the primary driver of this modeling transformation. With their unprecedented high resolution and multidimensionality, these datasets provide the essential foundation for transitioning from macro-scale statistical analysis to micro-scale simulation. This leap forward dramatically improves the ability to characterize the sources, intensities, and spatiotemporal heterogeneity of carbon emissions within complex urban systems, including functional zones, morphology, and transportation networks.
- This study underscores the critical application value of fine-scale modeling in achieving "carbon neutrality" targets. It not only deepens the quantitative understanding of the driving mechanisms behind carbon emissions but also enables robust scenario simulations for carbon neutrality pathways. Consequently, it provides a solid theoretical and technical foundation for formulating effective low-carbon spatial planning and precision urban management policies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Screening Methods and Data Processing
2.2. Analysis of Publication Trends and Keyword Temporal Trends
2.3. Keyword Co-Occurrence Networks and Research Directions
3. Results
3.1. Spatial Allocation Methods in Carbon Emission Modeling
3.1.1. Top-Down Spatial Allocation Methods
3.1.2. Bottom-Up and Hybrid Inventory Models
Feature | Top-Down Spatial Allocation Methods | Bottom-Up and Hybrid Methods |
---|---|---|
Core Concept | Relies on allocation factors to downscale aggregate data from macro- to micro-spatial units. | Balances macroscopic consistency with microscopic precision by using bottom-up source data as a core, constrained by top-down aggregate totals. |
Data Foundation | Aggregate statistical inventories; spatial proxy variables such as nighttime lights, population density grids, and land use data. | Integration of micro-scale source data and macro-data: point source data, traffic networks, population density, building data, and provincial/municipal energy statistics. |
Representative Datasets | ODIAC, EDGAR | Vulcan 3.0, CHRED |
Key Advantages | Computationally efficient, suitable for large-scale and long time-series analysis; data are relatively easy to acquire [41]. | Accurately characterizes local spatial heterogeneity; strongly linked to the physical mechanisms of emission processes and highly policy-relevant [60]. |
Key Limitations | Overlooks local variations; exhibits lower accuracy and significant uncertainty at finer scales [61]. | Data acquisition is difficult and costly, and the computational process is complex and time-consuming, making global-scale application challenging [21]. |
Applicable Scenarios | Macroscopic studies requiring rapid assessment of large-scale, long-term spatial patterns of carbon emissions. | Fine-grained research that requires high-precision, high-resolution emission data to support atmospheric inversions, urban policy formulation, and the assessment of mitigation effectiveness. |
3.2. Data-Driven Approaches in Spatial Carbon Emission Modeling
3.2.1. Single-Data-Driven Models
3.2.2. Multi-Data-Driven and Data Fusion Models
Feature | Single-Data-Driven Model | Multi-Data-Driven Model | Data Fusion Model |
---|---|---|---|
Core Concept | Relies on a single type of proxy data for spatial allocation. | Integrates multiple data sources, assigning different weights for different sectors. | Utilizes complex algorithms for the deep fusion of multi-source data to uncover non-linear relationships. |
Advantages | Simple methodology, low computational cost, suitable for data-limited regions or rapid macroscopic assessments. | Offers higher accuracy than single-data models and can reflect more diverse features [84,96]. | Achieves high predictive accuracy and strong robustness, supporting detailed, high-resolution modeling [18,94]. |
Challenges | Low accuracy, fails to capture complexity, and is overly simplistic [81]. | Presents difficulties in data integration, with weight allocation being a core challenge [89]. | Weak model interpretability, algorithmic complexity, and extremely high computational costs [88,93]. |
Applicable Scope | Data-limited regions or large-scale macroscopic estimations. | Regional and city-level research requiring higher precision. | Cutting-edge scientific research or modeling tasks demanding extremely high fidelity in capturing micro-scale heterogeneity. |
3.3. Characterization Methods of Spatial Carbon Emission Models
3.4. Uncertainty Analysis in Carbon Emission Spatial Modeling
4. Discussion
4.1. The Role of Geospatial Big Data in High-Resolution Carbon Modeling
4.2. Geospatial Big Data Driving the Transition to Fine-Scale Carbon Emission Modeling
4.2.1. A Paradigm Shift: From Macro-Scale Statistics to Micro-Scale Modeling
4.2.2. Sector-Specific and Multidimensional Modeling
4.3. Challenges in Geospatial Data Integration for Carbon Modeling
4.4. Assessment of Mitigation Efficacy Using Fine-Scale Spatial Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations Including Units and Nomenclature
AI | Artificial Intelligence |
POI | points of Interest |
GWR | Geographically Weighted Regression |
ODIAC | The Open-Data Inventory for Anthropogenic Carbon dioxide |
EDGAR | Emissions Database for Global Atmospheric Research |
MEIC | Multi-resolution Emission Inventory model for Climate and air pollution research |
CHRED | the China High-Resolution Emission Database |
DMSP-OLS | the Defense Meteorological Satellite Program’s Operational Linescan System |
NPP-VIIRS | the National Polar-orbiting Partnership’s Visible Infrared Imaging Radiometer Suite |
CDIAC | the Carbon Dioxide Information Analysis Center |
GGMCF | the Gridded Global Model of City Footprints |
IPCC | Intergovernmental Panel on Climate Change |
NTL | Nighttime Light |
FFDAS | Fossil Fuel Data Assimilation System |
BN | Bayesian Networks |
LSTM | Long Short-Term Memory |
ANN | Artificial Neural Networks |
MLP | Multilayer Perceptrons |
RF | Random Forests |
BP NN | Backpropagation Neural Networks |
GTWR | geographically and temporally weighted regression |
MGWR | multi-scale geographically weighted regression |
GIS | Geographic Information System |
LULC | land use and land cover |
OD matrices | Origin-Destination-Matrices |
GPS | Global Positioning System |
SSP | Shared Socioeconomic Pathways |
LST | Land surface temperature |
References
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the Sources and Sinks of Carbon Dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- IPCC. IPCC, 2023: Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Mitchell, L.E.; Lin, J.C.; Bowling, D.R.; Pataki, D.E.; Strong, C.; Schauer, A.J.; Bares, R.; Bush, S.E.; Stephens, B.B.; Mendoza, D.; et al. Long-Term Urban Carbon Dioxide Observations Reveal Spatial and Temporal Dynamics Related to Urban Characteristics and Growth. Proc. Natl. Acad. Sci. USA 2018, 115, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Romero-Lankao, P.; Gurney, K.R.; Seto, K.C.; Chester, M.; Duren, R.M.; Hughes, S.; Hutyra, L.R.; Marcotullio, P.; Baker, L.; Grimm, N.B.; et al. A Critical Knowledge Pathway to Low-carbon, Sustainable Futures: Integrated Understanding of Urbanization, Urban Areas, and Carbon. Earth’s Future 2014, 2, 515–532. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Climate Change and Urban Land Systems: Bridging the Gaps between Urbanism and Land Science. J. Land Use Sci. 2016, 11, 698–708. [Google Scholar] [CrossRef]
- Ribeiro, H.; Rybski, D.; Kropp, J.P. Effects of Changing Population or Density on Urban Carbon Dioxide Emissions. Nat. Commun. 2019, 10, 3204. [Google Scholar] [CrossRef]
- Tollefson, J. Megacities Move to Track Emissions. Nature 2012, 492, 20–21. [Google Scholar] [CrossRef]
- Jia, G.-S. New Understanding of Land-Climate Interactions from IPCC Special Report on Climate Change and Land. Adv. Clim. Change Res. 2020, 16, 9. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The Need for Urban Form Data in Spatial Modeling of Urban Carbon Emissions in China: A Critical Review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Mouzourides, P.; Eleftheriou, A.; Kyprianou, A.; Ching, J.; Neophytou, M.K.-A. Linking Local-Climate-Zones Mapping to Multi-Resolution-Analysis to Deduce Associative Relations at Intra-Urban Scales through an Example of Metropolitan London. Urban Clim. 2019, 30, 100505. [Google Scholar] [CrossRef]
- Ma, X.; Yang, J.; Sun, D.; Zhang, R.; Xiao, X.; Xia, J. Fine Allocation of Sectoral Carbon Emissions at Block Scale and Contribution of Functional Zones. Ecol. Inform. 2023, 78, 102293. [Google Scholar] [CrossRef]
- Wang, G.; Han, Q.; de Vries, B. A Geographic Carbon Emission Estimating Framework on the City Scale. J. Clean. Prod. 2020, 244, 118793. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating Carbon Emissions in Urban Functional Zones Using Multi-Source Data: A Case Study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the Urban Carbon Footprint: An Overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; O’Keeffe, D.; Patarasuk, R.; Hutchins, M.; Huang, J.; Rao, P.; Song, Y. Comparison of Global Downscaled versus Bottom-up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas. JGR Atmos. 2019, 124, 2823–2840. [Google Scholar] [CrossRef]
- Ahn, D.; Goldberg, D.L.; Coombes, T.; Kleiman, G.; Anenberg, S.C. CO2 Emissions from C40 Cities: Citywide Emission Inventories and Comparisons with Global Gridded Emission Datasets. Environ. Res. Lett. 2023, 18, 034032. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Jiang, Y.; Chen, P.; Yoshida, Y.; Sharifi, A.; Gasparatos, A.; Wu, Y.; Kanemoto, K.; Shigetomi, Y.; Guan, D. Monthly Direct and Indirect Greenhouse Gases Emissions from Household Consumption in the Major Japanese Cities. Sci. Data 2021, 8, 301. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.; Mosavi, A.; Camps-Valls, G. Machine Learning Information Fusion in Earth Observation: A Comprehensive Review of Methods, Applications and Data Sources. Inf. Fusion 2020, 63, 256–272. [Google Scholar] [CrossRef]
- Zhu, E.; Yao, J.; Zhang, X.; Chen, L. Explore the Spatial Pattern of Carbon Emissions in Urban Functional Zones: A Case Study of Pudong, Shanghai, China. Environ. Sci. Pollut. Res. 2023, 31, 2117–2128. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Q.; Huang, W.; Li, G.; Wang, T.; Mou, N.; Yang, T. Advancing Regional–Scale Spatio–Temporal Dynamics of FFCO2 Emissions in Great Bay Area. Remote Sens. 2024, 16, 2354. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Liu, M. High-Resolution Carbon Emission Mapping and Spatial-Temporal Analysis Based on Multi-Source Geographic Data: A Case Study in Xi’an City, China. Environ. Pollut. 2024, 361, 124879. [Google Scholar] [CrossRef]
- Keller, E.D.; Hilton, T.W.; Benson, A.; Karalliyadda, S.; Xie, S.; Gurney, K.R.; Turnbull, J.C. Mahuika-Auckland: A Spatially and Temporally Resolved Fossil Fuel CO2 Emissions Data Product for Auckland, New Zealand. Geosci. Data J. 2023, 10, 347–367. [Google Scholar] [CrossRef]
- Li, T.; Yu, L.; Ma, Y.; Duan, T.; Huang, W.; Zhou, Y.; Jin, D.; Li, Y.; Jiang, T. Carbon Emissions of 5G Mobile Networks in China. Nat. Sustain. 2023, 6, 1620–1631. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Sun, W.; Liu, B. Quantifying Heterogeneous Impacts of 2D/3D Built Environment on Carbon Emissions across Urban Functional Zones: A Case Study in Beijing, China. Energy Build. 2024, 319, 114513. [Google Scholar] [CrossRef]
- Gurney, K.R.; Romero-Lankao, P.; Seto, K.C.; Hutyra, L.R.; Duren, R.; Kennedy, C.; Grimm, N.B.; Ehleringer, J.R.; Marcotullio, P.; Hughes, S.; et al. Climate Change: Track Urban Emissions on a Human Scale. Nature 2015, 525, 179–181. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Woodcock, P.; Macura, B.; Collins, A. Making Literature Reviews More Reliable through Application of Lessons from Systematic Reviews. Conserv. Biol. 2015, 29, 1596–1605. [Google Scholar] [CrossRef]
- Marland, G.; Rotty, R.M.; Treat, N.L. CO2 from Fossil Fuel Burning: Global Distribution of Emissions. Tellus B 1985, 37B, 243–258. [Google Scholar] [CrossRef]
- Andres, R.J.; Fielding, D.J.; Marland, G.; Boden, T.A.; Kumar, N.; Kearney, A.T. Carbon Dioxide Emissions from Fossil-Fuel Use, 1751–1950. Tellus B 1999, 51, 759–765. [Google Scholar] [CrossRef]
- Boden, T.; Andres, R.; Marland, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751–2014) (V. 2017); Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2017. [Google Scholar]
- McKain, K.; Wofsy, S.C.; Nehrkorn, T.; Eluszkiewicz, J.; Ehleringer, J.R.; Stephens, B.B. Assessment of Ground-Based Atmospheric Observations for Verification of Greenhouse Gas Emissions from an Urban Region. Proc. Natl. Acad. Sci. USA 2012, 109, 8423–8428. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between Satellite Observed Visible-near Infrared Emissions, Population, Economic Activity and Electric Power Consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Institute for Environment and Sustainability. EDGAR-HTAP: A Harmonized Gridded Air Pollution Emission Dataset Based on National Inventories; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-Source Data Inventory for Anthropogenic CO2, Version 2016 (ODIAC2016): A Global Monthly Fossil Fuel CO2 Gridded Emissions Data Product for Tracer Transport Simulations and Surface Flux Inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A Very High-Resolution (1 km × 1 km) Global Fossil Fuel CO2 Emission Inventory Derived Using a Point Source Database and Satellite Observations of Nighttime Lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Gurney, K.R.; Razlivanov, I.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City. Environ. Sci. Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; Du Can, S.D.L.R. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef]
- Andrew, R.M. A Comparison of Estimates of Global Carbon Dioxide Emissions from Fossil Carbon Sources. Earth Syst. Sci. Data 2020, 12, 1437–1465. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Andrew, R.M.; Canadell, J.G.; Crippa, M.; Döbbeling, N.; Forster, P.M.; Guizzardi, D.; Olivier, J.; Peters, G.P.; et al. A Comprehensive and Synthetic Dataset for Global, Regional, and National Greenhouse Gas Emissions by Sector 1970–2018 with an Extension to 2019. Earth Syst. Sci. Data 2021, 13, 5213–5252. [Google Scholar] [CrossRef]
- Doxsey-Whitfield, E.; MacManus, K.; Adamo, S.B.; Pistolesi, L.; Squires, J.; Borkovska, O.; Baptista, S.R. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Pap. Appl. Geogr. 2015, 1, 226–234. [Google Scholar] [CrossRef]
- Luo, H.; Gao, X.; Liu, Z.; Liu, W.; Li, Y.; Meng, X.; Yang, X.; Yan, J.; Sun, L. Real-Time Characterization Model of Carbon Emissions Based on Land-Use Status: A Case Study of Xi’an City, China. J. Clean. Prod. 2024, 434, 140069. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Cao, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Spatiotemporal Dynamics of Energy-Related CO2 Emissions in China Based on Nighttime Imagery and Land Use Data. Ecol. Indic. 2021, 131, 108132. [Google Scholar] [CrossRef]
- Muntean, M.; Janssens-Maenhout, G.; Song, S.; Selin, N.E.; Olivier, J.G.J.; Guizzardi, D.; Maas, R.; Dentener, F. Trend Analysis from 1970 to 2008 and Model Evaluation of EDGARv4 Global Gridded Anthropogenic Mercury Emissions. Sci. Total Environ. 2014, 494–495, 337–350. [Google Scholar] [CrossRef]
- Asefi-Najafabady, S.; Rayner, P.J.; Gurney, K.R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K. A Multiyear, Global Gridded Fossil Fuel CO2 Emission Data Product: Evaluation and Analysis of Results. JGR Atmos. 2014, 119, 10213–10231. [Google Scholar] [CrossRef]
- Gregg, J.S.; Losey, L.M.; Andres, R.J.; Blasing, T.J.; Marland, G. The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America. J. Appl. Meteorol. Climatol. 2009, 48, 2528–2542. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Patarasuk, R.; Song, Y.; Huang, J.; Roest, G. The Vulcan Version 3.0 High-resolution Fossil Fuel CO2 Emissions for the United States. JGR Atmos. 2020, 125, e2020JD032974. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R.; Wing, I.S. Cities, Traffic, and CO2: A Multidecadal Assessment of Trends, Drivers, and Scaling Relationships. Proc. Natl. Acad. Sci. USA 2015, 112, 4999–5004. [Google Scholar] [CrossRef] [PubMed]
- Gately, C.K.; Hutyra, L.R. Large Uncertainties in Urban-Scale Carbon Emissions. J. Geophys. Res.-Atmos. 2017, 122, 11242–11260. [Google Scholar] [CrossRef]
- Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H. Emissions of Air Pollutants and Greenhouse Gases over Asian Regions during 2000–2008: Regional Emission Inventory in ASia (REAS) Version 2. Atmos. Chem. Phys. 2013, 13, 11019–11058. [Google Scholar] [CrossRef]
- Bun, R.; Nahorski, Z.; Horabik-Pyzel, J.; Danylo, O.; See, L.; Charkovska, N.; Topylko, P.; Halushchak, M.; Lesiv, M.; Valakh, M.; et al. Development of a High-Resolution Spatial Inventory of Greenhouse Gas Emissions for Poland from Stationary and Mobile Sources. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 853–880. [Google Scholar] [CrossRef]
- Nickless, A.; Scholes, R.J.; Filby, E. Spatial and Temporal Disaggregation of Anthropogenic CO2 Emissions from the City of Cape Town. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Cai, B.; Liang, S.; Zhou, J.; Wang, J.; Cao, L.; Qu, S.; Xu, M.; Yang, Z. China High Resolution Emission Database (CHRED) with Point Emission Sources, Gridded Emission Data, and Supplementary Socioeconomic Data. Resour. Conserv. Recycl. 2018, 129, 232–239. [Google Scholar] [CrossRef]
- VandeWeghe, J.R.; Kennedy, C. A Spatial Analysis of Residential Greenhouse Gas Emissions in the Toronto Census Metropolitan Area. J. Ind. Ecol. 2007, 11, 133–144. [Google Scholar] [CrossRef]
- Gurney, K.R.; Patarasuk, R.; Liang, J.; Song, Y.; O’Keeffe, D.; Rao, P.; Whetstone, J.R.; Duren, R.M.; Eldering, A.; Miller, C. The Hestia Fossil Fuel CO2 Emissions Data Product for the Los Angeles Megacity (Hestia-LA). Earth Syst. Sci. Data 2019, 11, 1309–1335. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Patarasuk, R.; O’Keeffe, D.; Huang, J.; Hutchins, M.; Lauvaux, T.; Turnbull, J.C.; Shepson, P.B. Reconciling the Differences between a Bottom-up and Inverse-Estimated FFCO2 Emissions Estimate in a Large US Urban Area. Elem. Sci. Anthr. 2017, 5, 44. [Google Scholar] [CrossRef]
- Roest, G.S.; Gurney, K.R.; Miller, S.M.; Liang, J. Informing Urban Climate Planning with High Resolution Data: The Hestia Fossil Fuel CO2 Emissions for Baltimore, Maryland. Carbon. Balance Manag. 2020, 15, 22. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K.; Jiborn, M.; Wood, R.; Többen, J.; Seto, K.C. Carbon Footprints of 13,000 Cities. Environ. Res. Lett. 2018, 13, 064041. [Google Scholar] [CrossRef]
- Dai, S.; Zuo, S.; Ren, Y. A Spatial Database of CO2 Emissions, Urban Form Fragmentation and City-Scale Effect Related Impact Factors for the Low Carbon Urban System in Jinjiang City, China. Data Brief 2020, 29, 105274. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C. Developing a High-Resolution Emission Inventory Tool for Low-Carbon City Management Using Hybrid Method—A Pilot Test in High-Density Hong Kong. Energy Build. 2020, 226, 110376. [Google Scholar] [CrossRef]
- Wu, N.; Geng, G.; Xu, R.; Liu, S.; Liu, X.; Shi, Q.; Zhou, Y.; Zhao, Y.; Liu, H.; Song, Y.; et al. Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China. Earth Syst. Sci. Data 2024, 16, 2893–2915. [Google Scholar] [CrossRef]
- Hutchins, M.G.; Colby, J.D.; Marland, G.; Marland, E. A Comparison of Five High-Resolution Spatially-Explicit, Fossil-Fuel, Carbon Dioxide Emission Inventories for the United States. Mitig. Adapt. Strat. Glob. Change 2017, 22, 947–972. [Google Scholar] [CrossRef]
- Lu, H.; Liu, G. Spatial Effects of Carbon Dioxide Emissions from Residential Energy Consumption: A County-Level Study Using Enhanced Nocturnal Lighting. Appl. Energy 2014, 131, 297–306. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-Time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Rayner, P.J.; Raupach, M.R.; Paget, M.; Peylin, P.; Koffi, E. A New Global Gridded Data Set of CO2 Emissions from Fossil Fuel Combustion: Methodology and Evaluation. J. Geophys. Res. 2010, 115, 2009JD013439. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Liu, X.; Hou, W.; Song, M.; Li, D.; Fan, W. China’s City-Level Carbon Emissions during 1992–2017 Based on the Inter-Calibration of Nighttime Light Data. Sci. Rep. 2021, 11, 3323. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-Level CO2 Emissions and Sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Cui, Y.; Zha, H.; Jiang, L.; Zhang, M.; Shi, K. Luojia 1–01 Data Outperform Suomi-NPP VIIRS Data in Estimating CO2 Emissions in the Service, Industrial, and Urban Residential Sectors. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3000905. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Yan, Y.; Huang, Y.; Huang, G.; Deng, M.; Yin, X.; Chen, Z. Optimized Estimation and Spatialization of Carbon Emissions Integrating Multi-Source Datasets. Environ. Res. Commun. 2025, 7, 055024. [Google Scholar] [CrossRef]
- Guo, B.; Hu, D.; Wang, S.; Lin, A.; Kuang, H. Estimation of Gridded Anthropogenic Heat Flux at the Optimal Scale by Integrating SDGSAT-1 Nighttime Lights and Geospatial Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103596. [Google Scholar] [CrossRef]
- Ozdemir, E.G.; Abdikan, S. Estimating Forest Above-Ground Biomass Using Sentinel-2 and SDGSAT-1 with Predictive Regression Models. In Proceedings of the 2024 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Padua, Italy, 29–31 October 2024; pp. 660–665. [Google Scholar]
- Cui, X.; Zhuang, C.; Jiao, Z.; Tan, Z.; Li, S. How Can Urban Built Environment (BE) Influence on-Road (OR) Carbon Emissions? A Road Segment Scale Quantification Based on Massive Vehicle Trajectory Big Data. J. Transp. Geogr. 2023, 111, 103669. [Google Scholar] [CrossRef]
- Hong, S.; Hui, E.C.M.; Lin, Y. Relationships between Carbon Emissions and Urban Population Size and Density, Based on Geo-Urban Scaling Analysis: A Multi-carbon Source Empirical Study. Urban Clim. 2022, 46, 101337. [Google Scholar] [CrossRef]
- Luqman, M.; Rayner, P.J.; Gurney, K.R. On the Impact of Urbanisation on CO2 Emissions. NPJ Urban Sustain. 2023, 3, 6. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Fang, X.-Q.; Su, Y. Changes in global grid pattern of carbon emissions. Clim. Change Res. 2018, 14, 505. [Google Scholar] [CrossRef]
- Xu, F.; Zheng, X.; Zheng, M.; Liu, D.; Ma, Y.; Wang, T.; Han, X. Fine Mapping and Multidimensional Analysis of Carbon Emission Reduction in China. Front. Ecol. Evol. 2023, 11, 1163308. [Google Scholar] [CrossRef]
- De B Richter, D.; Houghton, R. Gross CO2 Fluxes from Land-Use Change: Implications for Reducing Global Emissions and Increasing Sinks. Carbon. Manag. 2011, 2, 41–47. [Google Scholar] [CrossRef]
- Strassmann, K.M.; Joos, F.; Fischer, G. Simulating Effects of Land Use Changes on Carbon Fluxes: Past Contributions to Atmospheric CO2 Increases and Future Commitments Due to Losses of Terrestrial Sink Capacity. Tellus B Chem. Phys. Meteorol. 2008, 60, 583. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.; Gao, F.; Maraseni, T.N.; Wang, S.; Aryal, S.; Zhang, Z.; Wu, R. Land Use Carbon Emissions or Sink: Research Characteristics, Hotspots and Future Perspectives. Land 2024, 13, 279. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Monitoring Spatiotemporal Characteristics of Land-Use Carbon Emissions and Their Driving Mechanisms in the Yellow River Delta: A Grid-Scale Analysis. Environ. Res. 2022, 214, 114151. [Google Scholar] [CrossRef]
- Luo, H.; Wang, C.; Li, C.; Meng, X.; Yang, X.; Tan, Q. Multi-Scale Carbon Emission Characterization and Prediction Based on Land Use and Interpretable Machine Learning Model: A Case Study of the Yangtze River Delta Region, China. Appl. Energy 2024, 360, 122819. [Google Scholar] [CrossRef]
- Yao, X.; Zheng, W.; Wang, D.; Li, S.; Chi, T. Study on the Spatial Distribution of Urban Carbon Emissions at the Micro Level Based on Multisource Data. Environ. Sci. Pollut. Res. 2023, 30, 102231–102243. [Google Scholar] [CrossRef]
- Wang, M.; Cai, B. A Two-Level Comparison of CO2 Emission Data in China: Evidence from Three Gridded Data Sources. J. Clean. Prod. 2017, 148, 194–201. [Google Scholar] [CrossRef]
- Wu, J.; Jia, P.; Feng, T.; Li, H.; Kuang, H.; Zhang, J. Uncovering the Spatiotemporal Impacts of Built Environment on Traffic Carbon Emissions Using Multi-Source Big Data. Land Use Policy 2023, 129, 106621. [Google Scholar] [CrossRef]
- Huang, C.; Zhuang, Q.; Meng, X.; Zhu, P.; Han, J.; Huang, L. A Fine Spatial Resolution Modeling of Urban Carbon Emissions: A Case Study of Shanghai, China. Sci. Rep. 2022, 12, 9255. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, W.; Jiang, L. Spatial Modelling of Street-Level Carbon Emissions with Multi-Source Open Data: A Case Study of Guangzhou. Urban Clim. 2024, 55, 101974. [Google Scholar] [CrossRef]
- Kong, X.; Wang, X.; Jia, M.; Li, Q. Estimating the Carbon Emissions of Remotely Sensed Energy-Intensive Industries Using VIIRS Thermal Anomaly-Derived Industrial Heat Sources and Auxiliary Data. Remote Sens. 2022, 14, 2901. [Google Scholar] [CrossRef]
- Yang, H.; He, Q.; Cui, L.; Mohamed Taha, A.M. Exploring the Spatial Relationship between Urban Vitality and Urban Carbon Emissions. Remote Sens. 2023, 15, 2173. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Liu, S. Enhance Carbon Emission Prediction Using Bidirectional Long Short-Term Memory Model Based on Text-Based and Data-Driven Multimodal Information Fusion. J. Clean. Prod. 2024, 471, 143301. [Google Scholar] [CrossRef]
- Liu, H.; Yan, F.; Tian, H. A Vector Map of Carbon Emission Based on Point-Line-Area Carbon Emission Classified Allocation Method. Sustainability 2020, 12, 10058. [Google Scholar] [CrossRef]
- Wang, M.; Li, R.; Zhang, M.; Chen, L.; Zhang, F.; Huang, C. Mapping High-Resolution Energy Consumption CO2 Emissions in China by Integrating Nighttime Lights and Point Source Locations. Sci. Total Environ. 2023, 900, 165829. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Kong, X. Spatial Allocation of Anthropogenic Carbon Dioxide Emission Statistics Data Fusing Multi-Source Data Based on Bayesian Network. Sci. Rep. 2021, 11, 18128. [Google Scholar] [CrossRef]
- Zhang, M.; Kafy, A.-A.; Xiao, P.; Han, S.; Zou, S.; Saha, M.; Zhang, C.; Tan, S. Impact of Urban Expansion on Land Surface Temperature and Carbon Emissions Using Machine Learning Algorithms in Wuhan, China. Urban Clim. 2023, 47, 101347. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Yu, L. Carbon Emissions Forecasting Based on Tensor Decomposition with Multi-Source Data Fusion. Inf. Sci. 2024, 681, 121235. [Google Scholar] [CrossRef]
- Gong, M. Dynamic Spatial–Temporal Model for Carbon Emission Forecasting. J. Clean. Prod. 2024, 463, 142581. [Google Scholar] [CrossRef]
- Jodder, P.K.; Leya, R.S.; Rahaman, K.R.; Kafy, A.-A.; Rahaman, Z.A.; Almulhim, A.I. Modeling the Impacts of Residential, Commercial, and Industrial Land Use on Carbon Footprints Using Kernel Density Function in an Urban Setting. Earth Syst. Environ. 2023, 7, 237–254. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Shi, X. Mapping Global Fossil Fuel Combustion CO2 Emissions at High Resolution by Integrating Nightlight, Population Density, and Traffic Network Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1674–1684. [Google Scholar] [CrossRef]
- Meng, L.; Graus, W.; Worrell, E.; Huang, B. Estimating CO2 (Carbon Dioxide) Emissions at Urban Scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan System) Nighttime Light Imagery: Methodological Challenges and a Case Study for China. Energy 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Liang, H.; Cao, Z.; Dong, L.; Huang, C. An Improved Nightlight-Based Method for Modeling Urban CO2 Emissions. Environ. Modell. Softw. 2018, 107, 307–320. [Google Scholar] [CrossRef]
- Yang, Y.; Takase, T. Spatial Characteristics of Carbon Dioxide Emission Intensity of Urban Road Traffic and Driving Factors: Road Network and Land Use. Sustain. Cities Soc. 2024, 113, 105700. [Google Scholar] [CrossRef]
- Shi, F.; Liao, X.; Shen, L.; Meng, C.; Lai, Y. Exploring the Spatiotemporal Impacts of Urban Form on CO2 Emissions: Evidence and Implications from 256 Chinese Cities. Environ. Impact Assess. Rev. 2022, 96, 106850. [Google Scholar] [CrossRef]
- Zeng, C.; Wu, S.; Cheng, M.; Zhou, H.; Li, F. High-Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects. Sci. Rep. 2024, 14, 20916. [Google Scholar] [CrossRef]
- Liu, H.; Hu, C.; Xiao, Q.; Zhang, J.; Sun, F.; Shi, X.; Chen, X.; Yang, Y.; Xiao, W. Analysis of Anthropogenic CO2 Emission Uncertainty and Influencing Factors at City Scale in Yangtze River Delta Region: One of the World’s Largest Emission Hotspots. Atmos. Pollut. Res. 2024, 15, 102281. [Google Scholar] [CrossRef]
- Liu, M.; Qi, L.; Chen, H.; Luo, X.; Zhu, X.; Chen, C. Study on the Spatialization of Anthropogenic Carbon Emissions in China Based on SVR-ZSSR. Sci. Rep. 2023, 13, 1887. [Google Scholar] [CrossRef]
- Fattah, M.A.; Morshed, S.R.; Morshed, S.Y. Multi-Layer Perceptron-Markov Chain-Based Artificial Neural Network for Modelling Future Land-Specific Carbon Emission Pattern and Its Influences on Surface Temperature. SN Appl. Sci. 2021, 3, 359. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Liu, M.; Li, L. Spatial Differentiation of Carbon Emissions from Energy Consumption Based on Machine Learning Algorithm: A Case Study during 2015–2020 in Shaanxi, China. J. Environ. Sci. 2025, 149, 358–373. [Google Scholar] [CrossRef]
- Wang, A.; Hu, S.; Li, J. Using Machine Learning to Model Technological Heterogeneity in Carbon Emission Efficiency Evaluation: The Case of China’s Cities. Energy Econ. 2022, 114, 106238. [Google Scholar] [CrossRef]
- Khajavi, H.; Rastgoo, A. Predicting the Carbon Dioxide Emission Caused by Road Transport Using a Random Forest (RF) Model Combined by Meta-Heuristic Algorithms. Sustain. Cities Soc. 2023, 93, 104503. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Lei, L.; Liu, L. Estimating Global Anthropogenic CO2 Gridded Emissions Using a Data-Driven Stacked Random Forest Regression Model. Remote Sens. 2022, 14, 3899. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Zhang, L.; Cao, H. Spatial Functional Division, Infrastructure and Carbon Emissions: Evidence from China. Energy 2022, 256, 124551. [Google Scholar] [CrossRef]
- Lin, X.; Ma, J.; Chen, H.; Shen, F.; Ahmad, S.; Li, Z. Carbon Emissions Estimation and Spatiotemporal Analysis of China at City Level Based on Multi-Dimensional Data and Machine Learning. Remote Sens. 2022, 14, 3014. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Y.; Gao, X.; Liu, Z.; Song, X.; Meng, X.; Yang, X. Unveiling Land Use-Carbon Nexus: Spatial Matrix-Enhanced Neural Network for Predicting Commercial and Residential Carbon Emissions. Energy 2024, 305, 131722. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, W.; Xuan, W.; Lu, Y.; Huang, Z. Leveraging AI Techniques for Predicting Spatial Distribution and Determinants of Carbon Emission in China’s Yangtze River Delta. Sci. Rep. 2024, 14, 15392. [Google Scholar] [CrossRef]
- Cai, Y.; Su, S.; Zhang, P.; Chen, M.; Wang, Y.; Xie, Y.; Tan, Q. Quantifying High-Resolution Carbon Emissions Driven by Land Use Change in the Guangdong-Hong Kong-Macao Greater Bay Area. Urban Clim. 2024, 55, 101943. [Google Scholar] [CrossRef]
- Ding, Y.; Yin, J.; Jiang, H.; Xia, R.; Zhang, B.; Luo, X.; Wei, D. Dynamic Simulation of Carbon Emission under Different Policy Scenarios in Pearl River Delta Urban Agglomeration, China. Environ. Sci. Pollut. Res. 2023, 30, 102402–102417. [Google Scholar] [CrossRef]
- Huo, F.; Xu, L.; Li, Y.; Famiglietti, J.S.; Li, Z.; Kajikawa, Y.; Chen, F. Using Big Data Analytics to Synthesize Research Domains and Identify Emerging Fields in Urban Climatology. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e688. [Google Scholar] [CrossRef]
- Lin, J.; Guo, Y.; Li, J.; Shao, M.; Yao, P. Spatial and Temporal Characteristics of Carbon Emission and Sequestration of Terrestrial Ecosystems and Their Driving Factors in Mainland China—A Case Study of 352 Prefectural Administrative Districts. Front. Ecol. Evol. 2023, 11, 1169427. [Google Scholar] [CrossRef]
- Han, P.; Zeng, N.; Oda, T.; Lin, X.; Crippa, M.; Guan, D.; Janssens-Maenhout, G.; Ma, X.; Liu, Z.; Shan, Y.; et al. Evaluating China’s Fossil-Fuel CO2 Emissions from a Comprehensive Dataset of Nine Inventories. Atmos. Chem. Phys. 2020, 20, 11371–11385. [Google Scholar] [CrossRef]
- Oda, T.; Bun, R.; Kinakh, V.; Topylko, P.; Halushchak, M.; Marland, G.; Lauvaux, T.; Jonas, M.; Maksyutov, S.; Nahorski, Z.; et al. Errors and Uncertainties in a Gridded Carbon Dioxide Emissions Inventory. Mitig. Adapt. Strat. Glob. Change 2019, 24, 1007–1050. [Google Scholar] [CrossRef]
- Stagakis, S.; Feigenwinter, C.; Vogt, R.; Kalberer, M. A High-Resolution Monitoring Approach of Urban CO2 Fluxes. Part 1—Bottom-up Model Development. Sci. Total Environ. 2023, 858, 160216. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Cui, C.; Zhang, D.; Cao, L.; Wu, P.; Pang, L.; Zhang, J.; Dai, C. China City-Level Greenhouse Gas Emissions Inventory in 2015 and Uncertainty Analysis. Appl. Energy 2019, 253, 113579. [Google Scholar] [CrossRef]
- Griggs, D.J.; Noguer, M. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Weather 2002, 57, 267–269. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Roest, G.; Song, Y.; Mueller, K.; Lauvaux, T. Under-Reporting of Greenhouse Gas Emissions in U.S. Cities. Nat. Commun. 2021, 12, 553. [Google Scholar] [CrossRef]
- Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Min, D. Recent advance and challenge in geospatial big data mining. Acta Geod. Etl. Cartogr. Sin. 2022, 51, 1544–1560. [Google Scholar]
- Li, X.; Chen, G.; Zhang, Y.; Yu, L.; Du, Z.; Hu, G.; Liu, X. The Impacts of Spatial Resolutions on Global Urban-Related Change Analyses and Modeling. iScience 2022, 25, 105660. [Google Scholar] [CrossRef]
- Yang, C.; Clarke, K.; Shekhar, S.; Tao, C.V. Big Spatiotemporal Data Analytics: A Research and Innovation Frontier. Int. J. Geogr. Inf. Sci. 2019, 34, 1075–1088. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Z.; Du, Y.; Liang, F.; Yi, J.; Ma, T.; Pei, T. Quantify City-Level Dynamic Functions across China Using Social Media and POIs Data. Comput. Environ. Urban Syst. 2021, 85, 101552. [Google Scholar] [CrossRef]
- Zhang, F.; Zu, J.; Hu, M.; Zhu, D.; Kang, Y.; Gao, S.; Zhang, Y.; Huang, Z. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images. Comput. Environ. Urban Syst. 2020, 81, 101478. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, P. A Review on the Application Progress and Prospect of Mobile Phone Signaling Data in Jobs-Housing Relationship, Travel Behavior and Transportation Carbon Emissions Research-All Databases. Trop. Geogr. 2024, 44, 877–890. [Google Scholar]
- Eyring, V.; Collins, W.D.; Gentine, P.; Barnes, E.A.; Barreiro, M.; Beucler, T.; Bocquet, M.; Bretherton, C.S.; Christensen, H.M.; Dagon, K.; et al. Pushing the Frontiers in Climate Modelling and Analysis with Machine Learning. Nat. Clim. Chang. 2024, 14, 916–928. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, J.; Li, B.; Xia, C.; Zhu, Y.; Zhou, C.; Wang, Y.; Liu, X.; Yang, M. Spatial Analysis of Commuting Carbon Emissions in Main Urban Area of Beijing: A GPS Trajectory-Based Approach. Ecol. Indic. 2024, 159, 111610. [Google Scholar] [CrossRef]
- Javadpoor, M.; Sharifi, A.; Gurney, K.R. Mapping the Relationship between Urban Form and CO2 Emissions in Three US Cities Using the Local Climate Zones (LCZ) Framework. J. Environ. Manag. 2024, 370, 122723. [Google Scholar] [CrossRef]
- Marchi, M.; Capezzuoli, F.; Fantozzi, P.L.; Maccanti, M.; Pulselli, R.M.; Pulselli, F.M.; Marchettini, N. GHG Action Zone Identification at the Local Level: Emissions Inventory and Spatial Distribution as Methodologies for Policies and Plans. J. Clean. Prod. 2023, 386, 135783. [Google Scholar] [CrossRef]
- Zuo, S.; Dai, S.; Ju, J.; Meng, F.; Ren, Y.; Tian, Y.; Wang, K. The Importance of the Functional Mixed Entropy for the Explanation of Residential and Transport CO2 Emissions in the Urban Center of China. J. Clean. Prod. 2022, 380, 134947. [Google Scholar] [CrossRef]
- Ying, F. Assessment of Industrial Carbon Emission Characteristics Based on Multi-Source Data. Ph.D. Thesis, China University of Mining & Technology, Beijing, China, 2024. [Google Scholar]
- Ahmed Gassar, A.A.; Yun, G.Y.; Kim, S. Data-Driven Approach to Prediction of Residential Energy Consumption at Urban Scales in London. Energy 2019, 187, 115973. [Google Scholar] [CrossRef]
- Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon Dioxide (CO2) Emissions from the Service Industry, Traffic, and Secondary Industry as Revealed by the Remotely Sensed Nighttime Light Data. Int. J. Digit. Earth 2021, 14, 1514–1527. [Google Scholar] [CrossRef]
- Tian, Y.; Zuo, S.; Ju, J.; Dai, S.; Ren, Y.; Dou, P. Local Carbon Emission Zone Construction in the Highly Urbanized Regions: Application of Residential and Transport CO2 Emissions in Shanghai, China. Build. Environ. 2024, 247, 111007. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Y. The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review. Sustainability 2023, 15, 13439. [Google Scholar] [CrossRef]
- Lin, H.T.; Wu, K.L.; Lai, L.H. Prediction of Energy Usage Intensity of the Commercial Blocks in the Urban Areas of Taiwan. Appl. Mech. Mater. 2013, 316–317, 167–170. [Google Scholar] [CrossRef]
- Li, X.; Lin, C.; Lin, M.; Jim, C.Y. Drivers and Spatial Patterns of Carbon Emissions from Residential Buildings: An Empirical Analysis of Fuzhou City (China). Build. Environ. 2024, 257, 111534. [Google Scholar] [CrossRef]
- Shi, W.; Xiang, Y.; Ying, Y.; Jiao, Y.; Zhao, R.; Qiu, W. Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning. Remote Sens. 2024, 16, 1312. [Google Scholar] [CrossRef]
- Osorio, C.; Nanduri, K. Urban Transportation Emissions Mitigation: Coupling High-Resolution Vehicular Emissions and Traffic Models for Traffic Signal Optimization. Transp. Res. Part B Methodol. 2015, 81, 520–538. [Google Scholar] [CrossRef]
- Nyhan, M.; Sobolevsky, S.; Kang, C.; Robinson, P.; Corti, A.; Szell, M.; Streets, D.; Lu, Z.; Britter, R.; Barrett, S.R.H.; et al. Predicting Vehicular Emissions in High Spatial Resolution Using Pervasively Measured Transportation Data and Microscopic Emissions Model. Atmos. Environ. 2016, 140, 352–363. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-Temporal Distribution of Carbon Emissions by Daily Travel and Its Response to Urban Form: A Case Study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zhao, S.; Wang, X. Open-Data-Based City-Scale Gridded Carbon Dioxide Emission Inventory: Supporting Urban Carbon Monitoring in Chengdu, China. Carbon Footprints 2024, 3, 14. [Google Scholar] [CrossRef]
- Ji, Z.; Song, H.; Lei, L.; Sheng, M.; Guo, K.; Zhang, S. A Novel Approach for Predicting Anthropogenic CO2 Emissions Using Machine Learning Based on Clustering of the CO2 Concentration. Atmosphere 2024, 15, 323. [Google Scholar] [CrossRef]
- Cai, A.-Z.; Guo, R.; Zhang, Y.-H.; Wu, J. Status and Trends of Carbon Emissions Research at the County Level in China. Adv. Clim. Change Res. 2024, 15, 338–352. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Chen, H.; Wang, L.; Yang, J.; Plaza, A. Prediction of Changes in War-Induced Population and CO2 Emissions in Ukraine Using Social Media. Humanit. Soc. Sci. Commun. 2024, 11, 884. [Google Scholar] [CrossRef]
- Xu, F.; Zheng, X.; Zheng, M.; Liu, D.; Ma, Y.; Peng, J.; Shen, Y.; Han, X.; Zhang, M. Exploring Inequality: A Multi-Scale Analysis of China’s Consumption Carbon Footprint. IJGI 2025, 14, 49. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Huang, T.; Xing, Z. Fine-Scale Decomposition of China’s Underdeveloped Regional CO2 Emissions Peaking Targets: A Case Study of Gansu Province. Ecol. Process 2025, 14, 58. [Google Scholar] [CrossRef]
- Badyelgajy, Y.; Doszhanov, Y.; Kapsalyamov, B.; Onerkhan, G.; Sabitov, A.; Zhumazhanov, A.; Doszhanov, O. Calculation of Greenhouse Gas Emissions from Tourist Vehicles Using Mathematical Methods: A Case Study in Altai Tavan Bogd National Park. Sustainability 2025, 17, 6702. [Google Scholar] [CrossRef]
- Pu, X.; Cheng, Q.; Chen, H. Spatial–Temporal Dynamics of Land Use Carbon Emissions and Drivers in 20 Urban Agglomerations in China from 1990 to 2019. Environ. Sci. Pollut. Res. 2023, 30, 107854–107877. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, J.; Zhao, J.; Xue, F.; Li, Q.; Fang, K.; Shao, Z.; Zhang, J.; Li, S.; Zhou, J. Exploring Potential of Urban Land-Use Management on Carbon Emissions—A Case of Hangzhou, China. Ecol. Indic. 2023, 146, 109902. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Lu, K.-F.; Peng, Z.-R.; He, H.-D.; Xu, S.-Q. Spatiotemporal Variations of Carbon Dioxide (CO2) at Urban Neighborhood Scale: Characterization of Distribution Patterns and Contributions of Emission Sources. Sustain. Cities Soc. 2022, 78, 103646. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of Urban Forms on CO2 Emissions in China from a Multi-Perspective Analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, F.; Liu, H.; Qiao, Z. Towards Low Carbon Cities: A Machine Learning Method for Predicting Urban Blocks Carbon Emissions (UBCE) Based on Built Environment Factors (BEF) in Changxing City, China. Sustain. Cities Soc. 2021, 69, 102875. [Google Scholar] [CrossRef]
- Ding, G.; Guo, J.; Pueppke, S.G.; Yi, J.; Ou, M.; Ou, W.; Tao, Y. The Influence of Urban Form Compactness on CO2 Emissions and Its Threshold Effect: Evidence from Cities in China. J. Environ. Manag. 2022, 322, 116032. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-S.; Lin, Y.-C.; Cheah, W.; Lin, J.; Xu, L.; Li, Y. Influences and Pathways of Urban Form and Lifestyle on Carbon Emission Reduction. Urban Clim. 2022, 46, 101325. [Google Scholar] [CrossRef]
- Yan, F.; Gong, Y. Exploration of Ideas and Methods of County Land Spatial Planning Under Carbon Emission Reduction Targets-All Databases. Urban Stud. 2022, 29, 119–128. [Google Scholar]
- Chuai, X.; Xu, H.; Liu, Z.; Xiang, A.; Luo, Y.; Mao, W.; Wang, T.; Ye, X.; Miao, L.; Zhao, R.; et al. Promoting Low-Carbon Land Use: From Theory to Practical Application through Exploring New Methods. Humanit. Soc. Sci. Commun. 2024, 11, 727. [Google Scholar] [CrossRef]
- Ke, H.; Yang, B.; Dai, S. Does Intensive Land Use Contribute to Energy Efficiency?—Evidence Based on a Spatial Durbin Model. Int. J. Environ. Res. Public Health 2022, 19, 5130. [Google Scholar] [CrossRef]
Method | Statistical Mechanistic | Spatial Regression | Machine Learning | Coupled Modeling |
---|---|---|---|---|
Core Concept | Establishes linear quantitative relationships. | Considers spatial dependence and heterogeneity. | Fits complex non-linear relationships. | Integrates the advantages of mechanistic, spatial, and machine learning methods. |
Advantages | Simple, with a partial mechanistic basis. | Captures and explains spatial patterns [100]. | Achieves very high predictive accuracy; suitable for complex non-linear problems [110]. | Balances accuracy with interpretability [115]. |
Limitations | Cannot handle non-linear problems; sensitive to multicollinearity [82]. | Relies on linear assumptions; has limited goodness-of-fit in complex scenarios [116]. | “Black box” problem; model processes are difficult to interpret [106]. | Complex model construction and calibration process [111]. |
Applicable Scope | Fundamental, macroscopic, and exploratory analyses. | Studies requiring the analysis of spatial patterns and differentiation. | Tasks primarily aimed at high-precision prediction and fitting. | Comprehensive research requiring high precision, interpretability, and scenario simulation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Zheng, M.; Zheng, X.; Liu, D.; Wang, P.; Ma, Y.; Wang, X.; Zhang, X. Geospatial Big Data-Driven Fine-Scale Carbon Emission Modeling. Remote Sens. 2025, 17, 3185. https://doi.org/10.3390/rs17183185
Xu F, Zheng M, Zheng X, Liu D, Wang P, Ma Y, Wang X, Zhang X. Geospatial Big Data-Driven Fine-Scale Carbon Emission Modeling. Remote Sensing. 2025; 17(18):3185. https://doi.org/10.3390/rs17183185
Chicago/Turabian StyleXu, Feng, Minrui Zheng, Xinqi Zheng, Dongya Liu, Peipei Wang, Yin Ma, Xvlu Wang, and Xiaoyuan Zhang. 2025. "Geospatial Big Data-Driven Fine-Scale Carbon Emission Modeling" Remote Sensing 17, no. 18: 3185. https://doi.org/10.3390/rs17183185
APA StyleXu, F., Zheng, M., Zheng, X., Liu, D., Wang, P., Ma, Y., Wang, X., & Zhang, X. (2025). Geospatial Big Data-Driven Fine-Scale Carbon Emission Modeling. Remote Sensing, 17(18), 3185. https://doi.org/10.3390/rs17183185