CycloneWind: A Dynamics-Constrained Deep Learning Model for Tropical Cyclone Wind Field Downscaling Using Satellite Observations
Abstract
Highlights
- A Transformer-based model for 8-fold tropical cyclone wind field downscaling is developed.
- A novel TC dataset is constructed by integrating ERA5 reanalysis data with Cyclobs satellite observations.
- The method outperforms baselines in RMSE and dynamical metrics, and accurately reconstructs fine-scale tropical cyclone wind structures.
Abstract
1. Introduction
2. Datasets
2.1. ERA5 Data
2.2. Cyclobs Data
2.3. Data Processing
3. Method
3.1. Problem Formulation
3.2. Overall Architecture
3.3. Wind Field Dynamical Operators
- (1)
- Wind Shear Detection Operator
- (2)
- Wind Vortex Diffusion Operator
- (3)
- High-Frequency Filtering operator
3.4. Adaptive Dynamics Guided Blocks
3.5. Filtering Transformer Layers
3.6. Wind Dynamics-Constrained Loss Function
4. Experiments
4.1. Implementation Details
4.2. Evaluation Metrics
4.3. Comparison Methods
5. Results
5.1. Experiment Results
5.2. Case Study
5.3. Ablation Study on Modules
5.4. Ablation Study on Operators
5.5. Ablation Study on Input Elements
5.6. Wind Speed Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, W.; Jiang, T.; Jiang, X.; Zhang, Y.; Zhou, W. Evaluation of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9624–9635. [Google Scholar] [CrossRef]
- Ye, X.; Lin, M.; Xu, Y. Validation of Chinese HY-2 satellite radar altimeter significant wave height. Acta Oceanol. Sin. 2015, 34, 60–67. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and calibration of ERA5 severe winds in the Atlantic Ocean using satellite data. Remote Sens. 2022, 14, 4918. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.; Chandler, R.; Kendon, E.; Widmann, M.; Brienen, S.; Rust, H.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Varghese, S.; Langmann, B.; Ceburnis, D.; O’Dowd, C.D. Effect of horizontal resolution on meteorology and air-quality prediction with a regional scale model. Atmos. Res. 2011, 101, 574–594. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, Y.; Ma, W.; Yu, Q.; Wang, J.; Chen, L. Impact of spatial resolution on air quality simulation: A case study in a highly industrialized area in Shanghai, China. Atmos. Pollut. Res. 2015, 6, 322–333. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Yang, Z. Dynamical downscaling of regional climate: A review of methods and limitations. Sci. China Earth Sci. 2019, 62, 365–375. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Zhang, M.; Liu, Z.; Dan, J. Regional climate dynamical downscaling over the Tibetan Plateau—From quarter-degree to kilometer-scale. Sci. China Earth Sci. 2022, 65, 2237–2247. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Xiong, W.; Guo, S.; Xu, C.Y. Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin. Adv. Atmos. Sci. 2010, 27, 274–284. [Google Scholar] [CrossRef]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Simulation of future climate scenarios with a weather generator. Adv. Water Resour. 2011, 34, 448–467. [Google Scholar] [CrossRef]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1663–1672. [Google Scholar]
- Shen, Z.; Shi, C.; Shen, R.; Tie, R.; Ge, L. Spatial Downscaling of Near-Surface Air Temperature Based on Deep Learning Cross-Attention Mechanism. Remote Sens. 2023, 15, 5084. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; Hang, R.; Ge, L.; Shi, C.; Liu, Q. Statistical downscaling of temperature distributions in southwest China by using terrain-guided attention network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1678–1690. [Google Scholar] [CrossRef]
- Wang, J.; Lin, L.; Zhang, Z.; Gao, S.; Yu, H. Deep neural network based on dynamic attention and layer attention for meteorological data downscaling. ISPRS J. Photogramm. Remote Sens. 2024, 215, 157–176. [Google Scholar] [CrossRef]
- Tung, N.; Johannes, B.; Ashish, K.; Jayesh K., G.; Aditya, G. ClimaX: A foundation model for weather and climate. In Proceedings of the 40th International Conference on Machine Learning, ICML 2023, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Ling, F.; Lu, Z.; Luo, J.J.; Bai, L.; Behera, S.K.; Jin, D.; Pan, B.; Jiang, H.; Yamagata, T. Diffusion model-based probabilistic downscaling for 180-year East Asian climate reconstruction. Npj Clim. Atmos. Sci. 2024, 7, 131. [Google Scholar] [CrossRef]
- Höhlein, K.; Kern, M.; Hewson, T.; Westermann, R. A comparative study of convolutional neural network models for wind field downscaling. Meteorol. Appl. 2020, 27, e1961. [Google Scholar] [CrossRef]
- Stengel, K.; Glaws, A.; Hettinger, D.; King, R.N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl. Acad. Sci. USA 2020, 117, 16805–16815. [Google Scholar] [CrossRef]
- Dujardin, J.; Lehning, M. Wind-Topo: Downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep learning. Q. J. R. Meteorol. Soc. 2022, 148, 1368–1388. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, J.; Sun, Y.; Ren, K.; Deng, K.; Deng, K. Spatial Downscaling of Satellite Sea Surface Wind with Soft-Sharing Multi-Task Learning. Remote Sens. 2025, 17, 587. [Google Scholar] [CrossRef]
- Zhong, X.; Du, F.; Chen, L.; Wang, Z.; Li, H. Investigating transformer-based models for spatial downscaling and correcting biases of near-surface temperature and wind-speed forecasts. Q. J. R. Meteorol. Soc. 2024, 150, 275–289. [Google Scholar] [CrossRef]
- Yu, T.; Yang, R.; Huang, Y.; Gao, J.; Kuang, Q. Terrain-guided flatten memory network for deep spatial wind downscaling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9468–9481. [Google Scholar] [CrossRef]
- Sekiyama, T.T.; Hayashi, S.; Kaneko, R.; Fukui, K.I. Surrogate downscaling of mesoscale wind fields using ensemble Superresolution convolutional neural networks. Artif. Intell. Earth Syst. 2023, 2, 230007. [Google Scholar] [CrossRef]
- Lian, J.; Huang, S.; Shao, J.; Chen, P.; Tang, S.; Lu, Y.; Yu, H. TerraWind: A deep learning-based near-surface winds downscaling model for complex terrain region. Geophys. Res. Lett. 2024, 51, e2024GL112124. [Google Scholar] [CrossRef]
- Liu, J.; Shi, C.; Ge, L.; Tie, R.; Chen, X.; Zhou, T.; Gu, X.; Shen, Z. Enhanced Wind Field Spatial Downscaling Method Using UNET Architecture and Dual Cross-Attention Mechanism. Remote Sens. 2024, 16, 1867. [Google Scholar] [CrossRef]
- Mardani, M.; Brenowitz, N.; Cohen, Y.; Pathak, J.; Chen, C.Y.; Liu, C.C.; Vahdat, A.; Kashinath, K.; Kautz, J.; Pritchard, M. Residual corrective diffusion modeling for km-scale atmospheric downscaling. arXiv 2023, arXiv:2309.15214. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined co-and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Chacón, A.M.P.; Ramírez, I.S.; Márquez, F.P.G. K-nearest neighbour and K-fold cross-validation used in wind turbines for false alarm detection. Sustain. Futur. 2023, 6, 100132. [Google Scholar] [CrossRef]
- Shebl, A.; Abriha, D.; Dawoud, M.; Ali, M.A.H.; Csámer, Á. PRISMA vs. Landsat 9 in lithological mapping—A K-fold Cross-Validation implementation with Random Forest. Egypt. J. Remote Sens. Space Sci. 2024, 27, 577–596. [Google Scholar] [CrossRef]
- Linnenbrink, J.; Milà, C.; Ludwig, M.; Meyer, H. kNNDM CV: K-fold nearest-neighbour distance matching cross-validation for map accuracy estimation. Geosci. Model Dev. 2024, 17, 5897–5912. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Wei, M.; Zhang, X. Super-resolution neural operator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 18247–18256. [Google Scholar]
Algorithms | RMSE-U (m/s) | RMSE-V (m/s) | RMSE-Speed (m/s) | DivDiff (m/s/km) | VorDiff (m/s/km) | CosDis |
---|---|---|---|---|---|---|
EDSR [35] | 2.388 | 1.855 | 2.181 | 0.336 | 0.356 | 0.0197 |
RCAN [36] | 2.167 | 1.729 | 2.032 | 0.301 | 0.310 | 0.0161 |
SRNO [38] | 2.224 | 1.780 | 2.006 | 0.292 | 0.303 | 0.0173 |
SwinIR [37] | 2.117 | 1.682 | 1.966 | 0.291 | 0.297 | 0.0156 |
CycloneWind (no dyloss) | 1.930 | 1.568 | 1.789 | 0.244 | 0.250 | 0.0128 |
CycloneWind | 1.914 | 1.600 | 1.798 | 0.224 | 0.230 | 0.0124 |
ADGB | FTL | Dyloss | RMSE-U (m/s) | RMSE-V (m/s) | DivDiff (m/s/km) | VorDiff (m/s/km) |
---|---|---|---|---|---|---|
✓ | ✓ | ✓ | 1.914 | 1.600 | 0.224 | 0.230 |
✓ | ✓ | ✗ | 1.930 | 1.568 | 0.244 | 0.250 |
✓ | ✗ | ✗ | 2.052 | 1.673 | 0.268 | 0.275 |
✗ | ✗ | ✗ | 2.323 | 1.881 | 0.299 | 0.310 |
WSDO | WVDO | HFFO | RMSE-U (m/s) | RMSE-V (m/s) | DivDiff (m/s/km) | VorDiff (m/s/km) |
---|---|---|---|---|---|---|
✗ | ✗ | ✗ | 1.956 | 1.631 | 0.230 | 0.236 |
✓ | ✗ | ✗ | 1.952 | 1.617 | 0.229 | 0.235 |
✗ | ✓ | ✗ | 1.963 | 1.621 | 0.228 | 0.235 |
✗ | ✗ | ✓ | 1.922 | 1.603 | 0.225 | 0.231 |
✓ | ✓ | ✓ | 1.914 | 1.600 | 0.224 | 0.230 |
Wind Speed | LCC | SP | TISR | RMSE-U (m/s) | RMSE-V (m/s) | DivDiff (m/s/km) | VorDiff (m/s/km) |
---|---|---|---|---|---|---|---|
✓ | ✗ | ✗ | ✗ | 2.037 | 1.698 | 0.235 | 0.241 |
✓ | ✓ | ✗ | ✗ | 1.960 | 1.642 | 0.225 | 0.232 |
✓ | ✗ | ✓ | ✗ | 2.031 | 1.683 | 0.235 | 0.242 |
✓ | ✗ | ✗ | ✓ | 2.023 | 1.685 | 0.235 | 0.242 |
✓ | ✓ | ✓ | ✓ | 1.914 | 1.600 | 0.224 | 0.230 |
Wind Speed Range (m/s) | RMSE (m/s) | ||||||
---|---|---|---|---|---|---|---|
0–10.8 | 10.8–17.1 | 17.1–24.4 | 24.4–32.6 | 32.6–41.4 | 41.4–51.9 | 51.9–max | |
EDSR | 1.670 | 2.075 | 2.622 | 3.251 | 4.411 | 7.838 | 16.077 |
RCAN | 1.550 | 1.869 | 2.390 | 3.098 | 4.308 | 7.599 | 14.573 |
SwinIR | 1.561 | 1.827 | 2.372 | 3.048 | 4.091 | 6.991 | 13.010 |
SRNO | 1.638 | 1.953 | 2.457 | 3.091 | 4.021 | 6.708 | 12.381 |
CycloneWind | 1.457 | 1.692 | 2.122 | 2.754 | 3.797 | 6.483 | 11.479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Deng, K.; Su, Q.; Zhang, D.; Shi, X.; Ren, K. CycloneWind: A Dynamics-Constrained Deep Learning Model for Tropical Cyclone Wind Field Downscaling Using Satellite Observations. Remote Sens. 2025, 17, 3134. https://doi.org/10.3390/rs17183134
Hu Y, Deng K, Su Q, Zhang D, Shi X, Ren K. CycloneWind: A Dynamics-Constrained Deep Learning Model for Tropical Cyclone Wind Field Downscaling Using Satellite Observations. Remote Sensing. 2025; 17(18):3134. https://doi.org/10.3390/rs17183134
Chicago/Turabian StyleHu, Yuxiang, Kefeng Deng, Qingguo Su, Di Zhang, Xinjie Shi, and Kaijun Ren. 2025. "CycloneWind: A Dynamics-Constrained Deep Learning Model for Tropical Cyclone Wind Field Downscaling Using Satellite Observations" Remote Sensing 17, no. 18: 3134. https://doi.org/10.3390/rs17183134
APA StyleHu, Y., Deng, K., Su, Q., Zhang, D., Shi, X., & Ren, K. (2025). CycloneWind: A Dynamics-Constrained Deep Learning Model for Tropical Cyclone Wind Field Downscaling Using Satellite Observations. Remote Sensing, 17(18), 3134. https://doi.org/10.3390/rs17183134