A Decision-Support Framework for Evaluating Riverine Sediment Influence on U.S. Tidal Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. USGS SPARROW
2.1.2. USGS National Hydrography
2.1.3. USFWS National Wetlands Inventory
2.1.4. NOAA Sea Level
2.2. Model Workflow
- Geographic Variability: Each data source had different geographic extents and units, requiring careful database management across the study area.
- Attribute Differences: The attributes varied significantly between datasets, necessitating detailed examination and harmonization to ensure accurate and meaningful integration.
- Temporal Differences: The datasets were collected at different times, which may affect the accuracy of integrating disparate data. We cannot quantify the potential impact of these temporal offsets on model outputs because there are no alternative data sources on a national scale for comparison. National-scale modeling of overlapping terrestrial and coastal processes is inherently limited by the necessary use of disparate data sources produced across timescales that may not fully align. This manuscript highlights this limitation and attempts to provide a first-ever solution within the context of sediment transport from terrestrial to coastal systems.
- Resolution Differences: The spatial resolution of the datasets varied, which can impact the precision of an integrated geospatial model. Therefore, higher resolution data, such as the NHD stream centerlines, provided more spatial detail, so these data formed the basis for the model, and then other data, such as the rates of SLR, were joined to these higher resolution data.
- Computational Efficiency: Processing large volumes of data across multiple regions requires efficient computational strategies. Iterative testing and optimization were essential to manage the computational load, and then each HUC-4 within each region was processed through the model.
- Data Gaps: Some regions, like parts of New Jersey, had missing data, which required alternative approaches or exclusion from analyses. This required that each SPARROW region in the study had a version of the model to ensure proper data processing.
- Model Validation: Ensuring the reliability of the integrated model involved extensive testing and validation across different regions and conditions.
2.2.1. NHD Level Path and Terminal Path
2.2.2. Sediment Yield, Thickness, and Accretion Balance
2.2.3. Model Assessment Process
- (1)
- Iterative Testing: The model was tested iteratively, with adjustments based on feedback and results from each iteration. The team used their first-hand knowledge of specific estuaries, wetlands, and rivers across the East, Gulf, and West coasts to explore the model output. This process helped refine the model and improve its accuracy.
- (2)
- Visualization and Mapping: We used visualization tools to map the model’s output and disseminate the maps to the public via a website (https://tinyurl.com/SedimentPancake (accessed on 1 July 2025)), making it easier to identify patterns and discrepancies. Interactive maps allowed for detailed examination of the results.
- (3)
- Data Comparison: We conducted a data literature review to identify published sediment accumulation rates across the US and compared these data with our model results.
- (4)
- Regional Comparisons: We conducted regional and watershed comparisons to ensure the model performed consistently across different geographic areas. This involved testing the model in various HUC-4 regions and adjusting parameters as needed.
- (5)
- Expert Review: We sought feedback from experts in geomorphology, geology, and hydrology to validate the model’s assumptions and results. Their insights were crucial in identifying potential issues and areas for improvement.
- (6)
- Workshops and Stakeholder Feedback: We conducted workshops to gather feedback from stakeholders, including coastal managers and researchers. Their input helped us understand the practical utility of the model, and we used this feedback to make edits to the published website (https://tinyurl.com/SedimentPancake (accessed on 1 July 2025)).
2.2.4. Identification of Regional Spatial Patterns
- (1)
- Mean LP and TP thickness and accretion balance were computed for each HUC-12 watershed within each SPARROW region.
- (2)
- Global Moran’s I measured spatial autocorrelation based on the location of each watershed and the LP and TP attributes.
- (3)
- Incremental Spatial Autocorrelation (ISA) identified distances with significant clustering.
- (4)
- Getis-Ord General G identified significant clustering of high and low values.
- (5)
- Using results from the global statistics (Moran’s I, ISA, and General G), Anselin Local Moran’s I identified statistically significant hot and cold watersheds for both LP and TP. Each computation returns z-scores and p-values, which indicate the amount of statistical significance.
3. Results
3.1. GIS Data Considerations for Coastal Management
3.2. Model Predictions Versus Measured Field Data
3.3. Regional Patterns and Trends
3.4. Spatial Statistical Analysis
4. Discussion
4.1. Data and Modeling Challenges
4.2. Status of Public Environmental Data in the United States
4.3. Future Directions for Data to Support Coastal Models
4.4. Future Directions for Large-Scale Models to Support Rapid Assessment of Flood Risk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins, E.L.; Sanchez, G.M.; Terando, A.; Stillwell, C.C.; Mitasova, H.; Sebastian, A.; Meentemeyer, R.K. Predicting flood damage probability across the conterminous United States. Environ. Res. Lett. 2022, 17, 034006. [Google Scholar] [CrossRef]
- Crowell, M.; Coulton, K.; Johnson, C.; Westcott, J.; Bellomo, D.; Edehnan, S.; Hirsch, E. An Estimate of the U.S. Population Living in 100-Year Coastal Flood Hazard Areas. J. Coast. Res. 2010, 26, 201–211. [Google Scholar] [CrossRef]
- Halls, J.N.; Magolan, J.L. A Methodology to Assess Land Use Development, Flooding, and Wetland Change as Indicators of Coastal Vulnerability. Remote Sens. 2019, 11, 2260. [Google Scholar] [CrossRef]
- Ntelekos, A.A.; Oppenheimer, M.; Smith, J.A.; Miller, A.J. Urbanization, climate change and flood policy in the United States. Clim. Change 2010, 103, 597–616. [Google Scholar] [CrossRef]
- Quinn, N.; Bates, P.D.; Neal, J.; Smith, A.; Wing, O.; Sampson, C.; Smith, J.; Heffernan, J. The spatial dependence of flood hazard and risk in the United States. Water Resour. Res. 2019, 55, 1890–1911. [Google Scholar] [CrossRef]
- Evans, S. 7.3m homes along US Gulf, Atlantic coasts at risk to storm surge. Reinsurance News, 30 May 2019. [Google Scholar]
- Statistica. Floods in the U.S.—Statistics & Facts; Statistica: Hamburg, Germany, 2024. [Google Scholar]
- NWS. Preliminary US Flood Fatality Statistics; NWS: La Crosse, WI, USA, 2025.
- Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J. Worth of wetlands: Revised global monetary values of coastal and inland wetland ecosystem services. Mar. Freshw. Res. 2019, 70, 1189–1194. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Crosby, S.C.; Sax, D.F.; Palmer, M.E.; Booth, H.S.; Deegan, L.A.; Bertness, M.D.; Leslie, H.M. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 2016, 181, 93–99. [Google Scholar] [CrossRef]
- Watson, E.B.; Ferguson, W.; Champlin, L.K.; White, J.D.; Ernst, N.; Sylla, H.A.; Wilburn, B.P.; Wigand, C. Runnels mitigate marsh drowning in microtidal salt marshes. Front. Environ. Sci. 2022, 10, 987246. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Currin, C.; Mushegian, N. Effective use of thin layer sediment application in Spartina alterniflora marshes is guided by elevation-biomass relationship. Ecol. Eng. 2022, 177, 106566. [Google Scholar] [CrossRef]
- Raposa, K.B.; Wasson, K.; Smith, E.; Crooks, J.A.; Delgado, P.; Fernald, S.H.; Ferner, M.C.; Helms, A.; Hice, L.A.; Mora, J.W.; et al. Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biol. Conserv. 2016, 204, 263–275. [Google Scholar] [CrossRef]
- Lynch, A.J.; Thompson, L.M.; Beever, E.A.; Cole, D.N.; Engman, A.C.; Hawkins Hoffman, C.; Jackson, S.T.; Krabbenhoft, T.J.; Lawrence, D.J.; Limpinsel, D.; et al. Managing for RADical ecosystem change: Applying the Resist-Accept-Direct (RAD) framework. Front. Ecol. Environ. 2021, 19, 461–469. [Google Scholar] [CrossRef]
- Ganju, N.K.; Ackerman, K.V.; Defne, Z. Using Geospatial Analysis to Guide Marsh Restoration in Chesapeake Bay and Beyond. Estuaries Coasts 2024, 47, 1–17. [Google Scholar] [CrossRef]
- Ross, M.R.V.; Topp, S.N.; Appling, A.P.; Yang, X.; Kuhn, C.; Butman, D.; Simard, M.; Pavelsky, T.M. AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters. Water Resour. Res. 2019, 55, 10012–10025. [Google Scholar] [CrossRef]
- Pinnacle. Sea Level Affecting Marshes Model, Version 6.7 beta, Technical Documentation; Pinnacle: Waitsfield, VT, USA, 2016. [Google Scholar]
- Ensign, S.H.; Halls, J.N.; Peck, E.K. Watershed sediment cannot offset sea level rise in most US tidal wetlands. Science 2023, 382, 1191–1195. [Google Scholar] [CrossRef]
- Hoos, A.B.; Roland, V.L., II. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in the Southeastern United States; 2019-5135; U.S. Geological Survey: Reston, VA, USA, 2019.
- Ator, S.W. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Northeastern United States; 2019-5118; U.S. Geological Survey: Reston, VA, USA, 2019.
- Robertson, D.M.; Saad, D.A. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Midwestern United States; 2019-5114; U.S. Geological Survey: Reston, VA, USA, 2019; p. 88.
- Wise, D.R. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Pacific Region of the United States; 2019-5112; U.S. Geological Survey: Reston, VA, USA, 2019; p. 78.
- Wise, D.R.; Anning, D.W.; Miller, O.L. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Transport in Streams of the Southwestern United States; 2019-5106; U.S. Geological Survey: Reston, VA, USA, 2019; p. 78.
- Ator, S.W.; García, A.M.; Schwarz, G.E.; Blomquist, J.D.; Sekellick, A.J. Toward Explaining Nitrogen and Phosphorus Trends in Chesapeake Bay Tributaries, 1992–2012. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 1149–1168. [Google Scholar] [CrossRef]
- Roman, D.C.; Vogel, R.M.; Schwarz, G.E. Regional regression models of watershed suspended-sediment discharge for the eastern United States. J. Hydrol. 2012, 472–473, 53–62. [Google Scholar] [CrossRef]
- Stralberg, D.; Brennan, M.; Callaway, J.C.; Wood, J.K.; Schile, L.M.; Jongsomjit, D.; Kelly, M.; Parker, V.T.; Crooks, S. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay. PLoS ONE 2011, 6, e27388. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; White, M.J.; Allen, P.M.; Gassman, P.W.; Bieger, K. Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 154–169. [Google Scholar] [CrossRef]
- Viger, R.J.; Rea, A.; Simley, J.D.; Hanson, K.M. NHDPlusHR: A National Geospatial Framework for Surface-Water Information. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 901–905. [Google Scholar] [CrossRef]
- FGDC. Classification of Wetlands and Deepwater Habitats of the United States; FGDC: Reston, VA, USA, 2013.
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States; NOAA: Silver Springs, MD, USA, 2017.
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines; U.S. Department of Commerce: Washington, DC, USA, 2022; 111p.
- Moore, R.B.; McKay, L.D.; Rea, A.H.; Bondelid, T.R.; Price, C.V.; Dewald, T.G.; Johnston, C.M. User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution; U.S. Geological Survey: Reston, VA, USA, 2019; 66p. [CrossRef]
- Wiesebron, L.E.; Steiner, N.; Morys, C.; Ysebaert, T.; Bouma, T.J. Sediment Bulk Density Effects on Benthic Macrofauna Burrowing and Bioturbation Behavior. Front. Mar. Sci. 2021, 8, 707785. [Google Scholar] [CrossRef]
- Cahoon, D.R. High-Precision Measurements of Wetland Sediment Elevation: I. Recent Improvements to the Sedimentation-Erosion Table. J. Sediment. Res. 2002, 72, 730–733. [Google Scholar] [CrossRef]
- Medeiros, S.; Hagen, S.; Weishampel, J.; Angelo, J. Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density. Remote Sens. 2015, 7, 3507. [Google Scholar] [CrossRef]
- Medeiros, S.C.; Bobinsky, J.S.; Abdelwahab, K. Locality of Topographic Ground Truth Data for Salt Marsh Lidar DEM Elevation Bias Mitigation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5766–5775. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Muller, E. Mapping riparian vegetation along rivers: Old concepts and new methods. Aquat. Bot. 1997, 58, 411–437. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Ganju, N.K.; Defne, Z. An Unvegetated to Vegetated Ratio (UVVR) for Coastal Wetlands of the Conterminous United States (2014–2018); U.S. Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Ganju, N.K.; Couvillion, B.R.; Defne, Z.; Ackerman, K.V. Development and Application of Landsat-Based Wetland Vegetation Cover and UnVegetated-Vegetated Marsh Ratio (UVVR) for the Conterminous United States. Estuaries Coasts 2022, 45, 1861–1878. [Google Scholar] [CrossRef]
- Martinez, M.; Buffington, K.J.; Ganju, N.K.; Defne, Z.; Ackerman, K.V.; Thorne, K.M.; Guntenspergen, G.R.; Carr, J.A. Multi-model Comparison of Salt Marsh Longevity Under Relative Sea-Level Rise. Estuaries Coasts 2025, 48, 131. [Google Scholar] [CrossRef]
- Defne, Z.; Ganju, N.K. Conceptual Salt Marsh Units for Wetland Synthesis: Edwin B. Forsythe National Wildlife Refuge, New Jersey; U.S. Geological Survey: Reston, VA, USA, 2016. [CrossRef]
- Read, E.K.; Carr, L.; De Cicco, L.; Dugan, H.A.; Hanson, P.C.; Hart, J.A.; Kreft, J.; Read, J.S.; Winslow, L.A. Water quality data for national-scale aquatic research: The Water Quality Portal. Water Resour. Res. 2017, 53, 1735–1745. [Google Scholar] [CrossRef]
- Allen, T.R.; Oertel, G.F.; Gares, P.A. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA. Geomorphology 2012, 137, 138–149. [Google Scholar] [CrossRef]
- Anderson, P.C.; Carter, A.G.; Funderburk, R.W. The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island. Remote Sens. 2016, 8, 602. [Google Scholar] [CrossRef]
- Brock, J.C.; Krabill, W.B.; Sallenger, A.H. Barrier island morphodynamic classification based on lidar metrics for north Assateague Island, Maryland. J. Coast. Res. 2004, 20, 498–509. [Google Scholar] [CrossRef]
- Dawson, A.G.; Gomez, C.; Ritchie, W.; Batstone, C.; Lawless, M.; Rowan, J.S.; Dawson, S.; McIlveny, J.; Bates, R.; Muir, D. Barrier Island Geomorphology, Hydrodynamic Modelling, and Historical Shoreline Changes: An Example from South Uist and Benbecula, Scottish Outer Hebrides. J. Coast. Res. 2012, 28, 1462–1476. [Google Scholar] [CrossRef]
- Halls, J.N.; Frishman, M.A.; Hawkes, A.D. An Automated Model to Classify Barrier Island Geomorphology Using Lidar Data. In Proceedings of the 2nd International Electronic Conference on Remote Sensing, Online, 22 March–5 April 2018; p. 336. [Google Scholar]
- Halls, J.N.; Frishman, M.A.; Hawkes, A.D. An Automated Model to Classify Barrier Island Geomorphology Using Lidar Data and Change Analysis (1998–2014). Remote Sens. 2018, 10, 1109. [Google Scholar] [CrossRef]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Liu, H.X.; Wang, L.; Sherman, D.; Gao, Y.G.; Wu, Q.S. An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes. Int. J. Geogr. Inf. Sci. 2010, 24, 1015–1041. [Google Scholar] [CrossRef]
- Liu, H.X.; Wu, Q.S. Assessment of Storm-Induced Coastal Morphologic Changes and Damage Using Repeat Lidar Remote Sensing Surveys. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Munich, Germany, 22–27 July 2012; pp. 891–894. [Google Scholar]
- Moss, T. The Application of Lidar Data to Classify and Analyze Change in Barrier Island Features at Masonboro Island, North Carolina. Master’s Thesis, University of North Carolina Wilmington, Wilmington, NC, USA, 2015. [Google Scholar]
- Singh, S.; Vinod Kumar, K.; Jagannadha Rao, M. Utilization of LiDAR DTM for Systematic Improvement in Mapping and Classification of Coastal Micro-Geomorphology. J. Indian Soc. Remote Sens. 2020, 48, 805–816. [Google Scholar] [CrossRef]
- White, S.A.; Wang, Y. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sens. Environ. 2003, 85, 39–47. [Google Scholar] [CrossRef]
- Vernimmen, R.; Hooijer, A. New LiDAR-Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early-Stage Sea-Level Rise. Earth’s Future 2023, 11, e2022EF002880. [Google Scholar] [CrossRef]
- Vernimmen, R.; Hooijer, A.; Pronk, M. New ICESat-2 Satellite LiDAR Data Allow First Global Lowland DTM Suitable for Accurate Coastal Flood Risk Assessment. Remote Sens. 2020, 12, 2827. [Google Scholar] [CrossRef]
- Bian, L.; Melesse, A.M.; Leon, A.S.; Verma, V.; Yin, Z. A Deterministic Topographic Wetland Index Based on LiDAR-Derived DEM for Delineating Open-Water Wetlands. Water 2021, 13, 2487. [Google Scholar] [CrossRef]
- Thompson, C.M.; Frazier, T.G. Deterministic and probabilistic flood modeling for contemporary and future coastal and inland precipitation inundation. Appl. Geogr. 2014, 50, 1–14. [Google Scholar] [CrossRef]
- Déguénon, S.D.D.M.; Adade, R.; Teka, O.; Aheto, D.W.; Sinsin, B. Sea-level rise and flood mapping: A review of models for coastal management. Nat. Hazards 2024, 120, 2155–2178. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef]
- Zhang, X.H.; Jones, C.E.; Oliver-Cabrera, T.; Simard, M.; Fagherazzi, S. Using rapid repeat SAR interferometry to improve hydrodynamic models of flood propagation in coastal wetlands. Adv. Water Resour. 2022, 159, 104088. [Google Scholar] [CrossRef]
- Czajkowski, J.; Villarini, G.; Michel-Kerjan, E.; Smith, J.A. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett. 2013, 8, 044056. [Google Scholar] [CrossRef]
- Amante, C.J. Uncertain seas: Probabilistic modeling of future coastal flood zones. Int. J. Geogr. Inf. Sci. 2019, 33, 2188–2217. [Google Scholar] [CrossRef]
- Andrew, O.; Apan, A.; Paudyal, D.R.; Perera, K. Convolutional Neural Network-Based Deep Learning Approach for Automatic Flood Mapping Using NovaSAR-1 and Sentinel-1 Data. ISPRS Int. J. Geo-Inf. 2023, 12, 194. [Google Scholar] [CrossRef]
- Crowell, M.; Hirsch, E.; Hayes, T.L. Improving FEMA’s coastal risk assessment through the National Flood Insurance Program: An historical overview. Mar. Technol. Soc. J. 2007, 41, 18–27. [Google Scholar] [CrossRef]
- Blessing, R.; Sebastian, A.; Brody, S.D. Flood Risk Delineation in the United States: How Much Loss Are We Capturing? Nat. Hazards Rev. 2017, 18, 10. [Google Scholar] [CrossRef]
- Brown, I. Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ. Model. Softw. 2006, 21, 1479–1490. [Google Scholar] [CrossRef]
- Lane, C.R.; Hall, A.; D’Amico, E.; Sangwan, N.; Merwade, V. Characterizing the Extent of Spatially Integrated Floodplain and Wetland Systems in the White River, Indiana, USA. J. Am. Water Resour. Assoc. 2017, 53, 774–790. [Google Scholar] [CrossRef] [PubMed]
- Rincón, D.; Khan, U.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef]
- Samela, C.; Albano, R.; Sole, A.; Manfreda, S. A GIS tool for cost-effective delineation of flood-prone areas. Comput. Environ. Urban Syst. 2018, 70, 43–52. [Google Scholar] [CrossRef]
- Thumerer, T.; Jones, A.P.; Brown, D. A GIS based coastal management system for climate change associated flood risk assessment on the east coast of England. Int. J. Geogr. Inf. Sci. 2000, 14, 265–281. [Google Scholar] [CrossRef]
- Luke, A.; Sanders, B.F.; Goodrich, K.A.; Feldman, D.L.; Boudreau, D.; Eguiarte, A.; Serrano, K.; Reyes, A.; Schubert, J.E.; AghaKouchak, A.; et al. Going beyond the flood insurance rate map: Insights from flood hazard map co-production. Nat. Hazards Earth Syst. Sci. 2018, 18, 1097–1120. [Google Scholar] [CrossRef]
- Morss, R.; Wilhelmi, O.; Downton, M.; Gruntfest, E. Flood risk, uncertainty, and scientific information for decision making—Lessons from an interdisciplinary project. Bull. Am. Meteorol. Soc. 2005, 86, 1593–1601. [Google Scholar] [CrossRef]
- Zhu, J.; Dang, P.; Cao, Y.; Lai, J.; Guo, Y.; Wang, P.; Li, W. A flood knowledge-constrained large language model interactable with GIS: Enhancing public risk perception of floods. Int. J. Geogr. Inf. Sci. 2024, 38, 603–625. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Yao, X.; Feng, K.; Luo, C.; Sun, N. Flood Hazard Analysis Based on Copula Connect Function. Nat. Hazards Rev. 2023, 24, 04022041. [Google Scholar] [CrossRef]
- Maidment, D.R. Conceptual Framework for the National Flood Interoperability Experiment. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 245–257. [Google Scholar] [CrossRef]
- Grenfell, S.E.; Callaway, R.M.; Grenfell, M.C.; Bertelli, C.M.; Mendzil, A.F.; Tew, I. Will a rising sea sink some estuarine wetland ecosystems? Sci. Total Environ. 2016, 554, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Gersonius, B.; van Buuren, A.; Zethof, M.; Kelder, E. Resilient flood risk strategies: Institutional preconditions for implementation. Ecol. Soc. 2016, 21, 28. [Google Scholar] [CrossRef]
Data | Organization | URL | Date (s) |
---|---|---|---|
SPAtially Referenced Regression On Watershed (SPARROW) | US Geological Survey (USGS) | https://www.usgs.gov/mission-areas/water-resources/science/sparrow-mappers | 1999–2014 |
National Hydrography Dataset Plus High Resolution (NHDPlusHR *) | USGS | https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution | 2000–2018 |
National Wetlands Inventory (NWI) | US Fish & Wildlife Service (USFWS) | https://www.fws.gov/program/national-wetlands-inventory/download-state-wetlands-data | 1972–2019 |
Sea-level elevation and extent | National Oceanic and Atmospheric Administration (NOAA) | https://coast.noaa.gov/slrdata/ | 2016 |
Sea-level rise forecasts | NOAA | https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-data.html | 2022 |
Sea-level rise trends | NOAA | https://tidesandcurrents.noaa.gov/sltrends/ | Minimum 30 years to present |
Region | Catchments | Catchments Within Coastal HUC-4 Watersheds | HUC-12 Watersheds | HUC-4 Watersheds Date (s) |
---|---|---|---|---|
1: Midwest | 1,354,229 | 44,858 | 3563 | 17 |
2: Northeast | 191,391 | 172,082 | 4837 | 12 |
3: Pacific | 338,825 | 151,777 | 11,083 | 10 |
4: Southeast | 317,604 | 283,067 | 6961 | 8 |
5: Southwest | 440,236 | 61,251 | 8707 | 8 |
Total | 2,642,285 | 713,035 | 35,151 | 53 |
System | Subsystem | Class | Subclass | Modifier |
---|---|---|---|---|
Estuarine (E) | Intertidal (2) | AB, EM, FO, SS | AB: Algal, Rooted Vascular, Floating Vascular EM: Persistent, Nonpersistent FO and SS: Deciduous, Evergreen | All |
Riverine (R) | Tidal (1) | AB, EM | AB: Algal, Aquatic Moss, Rooted Vascular, Floating Vascular EM: Nonpersistent | All |
Marine (M) | Intertidal (2) | AB | Algal, Rooted Vascular | Regularly flooded–fresh-tidal Seasonally flooded–fresh-tidal Temporarily flooded–fresh-tidal Semipermanently flooded–fresh-tidal Permanently flooded–fresh-tidal |
Palustrine (P) | N/A | AB, EM, FO, SS | AB: Algal, Floating Vascular, Rooted Vascular EM: non-persistent, persistent FO and SS: deciduous, Evergreen | Permanently flooded–tidal Semipermanently flooded–tidal Seasonally flooded–tidal Temporarily flooded–tidal |
Statistic | Midwest | Southwest | Pacific | Southeast | Northeast |
---|---|---|---|---|---|
Total Area (km2) | 104,628 | 368,558 | 428,832 | 606,200 | 406,025 |
Total Wetland Area (km2) | 50,084 | 34,531 | 48,106 | 156,251 | 79,879 |
Percent Wetland | 47.9% | 9.4% | 11.2% | 25.8% | 19.7% |
Total Tidal Wetland Area (km2) | 5957 | 2296 | 1044 | 6356 | 3582 |
Percent Tidal | 5.7% | 0.6% | 0.2% | 1.0% | 0.9% |
Total Tidal Wetland Area TP (km2) | 3925 | 1574 | 661 | 5271 | 3016 |
Total Tidal Wetland Area LP (km2) | 3925 | 1574 | 661 | 5271 | 3016 |
Percent of Tidal Used in Model | 65.9% | 68.6% | 63.3% | 82.9% | 84.2% |
Average RSL 2020 1M (cm/yr) | 1.09 | 0.78 | 0.31 | 0.66 | 0.93 |
Number of TP streams (N = 16,970) | 552 | 3600 | 4226 | 7712 | 880 |
Number of LP streams (N = 171,902) | 8214 | 82,534 | 11,429 | 66,679 | 3046 |
Average TP Watershed Size (km2) | 471,866.64 | 217.28 | 729.10 | 477.92 | 2397.87 |
Average LP Watershed Size (km2) | 382.8 | 8.51 | 134.84 | 10.58 | 274.74 |
Attribute | Global Moran’s I z-Score | Global Moran’s I p-Value | ISA ** Peak Distance (m) | ISA Peak Distance z-Score | General G z-Score | General G p-Value |
---|---|---|---|---|---|---|
Northeast | ||||||
LP Thickness | 8.56 | 0.00 | 100,000 | 9.55 | 8.97 | 0.00 |
LP Accretion Balance | 8.56 | 0.00 | 150,000 | 7.00 | 9.51 | 0.00 |
TP Thickness | 71.45 | 0.00 | 250,000 | 221.26 | 111.72 | 0.00 |
TP Accretion Balance | 71.45 | 0.00 | 250,000 | 205.51 | 118.77 | 0.00 |
Midwest | ||||||
LP Thickness | 2.24 | 0.03 | 15,000 | 3.74 | 1.78 | 0.07 |
LP Accretion Balance | 2.15 | 0.03 | 15,000 | 3.69 | 1.60 | 0.11 |
TP Thickness | 2.74 | 0.01 | 10,000 | 4.88 | 2.66 | 0.01 |
TP Accretion Balance | 2.74 | 0.01 | 10,000 | 4.88 | 2.66 | 0.01 |
Pacific | ||||||
LP Thickness | 1.71 | 0.09 | 260,000 | 4.22 | 2.41 | 0.02 |
LP Accretion Balance | 1.71 | 0.09 | 250,000 | 4.22 | 2.38 | 0.02 |
TP Thickness | 3.14 | 0.00 | 60,000 | 8.21 | 5.83 | 0.00 |
TP Accretion Balance | 3.14 | 0.00 | 60,000 | 8.21 | 5.83 | 0.00 |
Southeast | ||||||
LP Thickness | 4.42 | 0.00 | 110,000 | 3.47 | 3.84 | 0.00 |
LP Accretion Balance | 4.42 | 0.00 | 250,000 | 2.88 | 4.09 | 0.00 |
TP Thickness | 32.31 | 0.00 | 15,000 | 33.95 | 29.00 | 0.00 |
TP Accretion Balance | 32.31 | 0.00 | 15,000 | 33.95 | 28.99 | 0.00 |
Southwest | ||||||
LP Thickness | 1.79 | 0.07 | 10,000 | 7.23 | 0.91 | 0.36 |
LP Accretion Balance | 1.79 | 0.07 | 10,000 | 7.23 | 0.93 | 0.35 |
TP Thickness | 1.52 | 0.13 | 10,000 | 7.01 | 1.50 | 0.13 |
TP Accretion Balance | 1.52 | 0.13 | 10,000 | 7.01 | 1.53 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halls, J.N.; Ensign, S.H.; Peck, E.K. A Decision-Support Framework for Evaluating Riverine Sediment Influence on U.S. Tidal Wetlands. Remote Sens. 2025, 17, 3130. https://doi.org/10.3390/rs17183130
Halls JN, Ensign SH, Peck EK. A Decision-Support Framework for Evaluating Riverine Sediment Influence on U.S. Tidal Wetlands. Remote Sensing. 2025; 17(18):3130. https://doi.org/10.3390/rs17183130
Chicago/Turabian StyleHalls, Joanne N., Scott H. Ensign, and Erin K. Peck. 2025. "A Decision-Support Framework for Evaluating Riverine Sediment Influence on U.S. Tidal Wetlands" Remote Sensing 17, no. 18: 3130. https://doi.org/10.3390/rs17183130
APA StyleHalls, J. N., Ensign, S. H., & Peck, E. K. (2025). A Decision-Support Framework for Evaluating Riverine Sediment Influence on U.S. Tidal Wetlands. Remote Sensing, 17(18), 3130. https://doi.org/10.3390/rs17183130