Lateral Responses of Coastal Intertidal Meta-Ecosystems to Sea-Level Rise: Lessons from the Yangtze Estuary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data
2.2.1. Eddy Covariance (EC) Data
2.2.2. MODIS Products
2.2.3. Relative Sea-Level Rise
2.3. Identifying the Hydrological Status
2.4. Data Processing and Analysis
3. Results
3.1. Environmental Characteristics
3.2. MODIS-Based Vegetation Characteristics
3.3. Estimation of the Lateral Response
4. Discussion
4.1. Uncertainties and Challenges in Lateral Ecosystem Shifts Under Rising Sea Levels
4.2. Extension and Limitations Along Elevational Gradients Under SLR
4.3. Spatial Simulations and Environmental Drivers of Lateral Responses to SLR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef] [PubMed]
- Hawman, P.A.; Mishra, D.R.; O’Connell, J.L. Dynamic emergent leaf area in tidal wetlands: Implications for satellite-derived regional and global blue carbon estimates. Remote Sens. Environ. 2023, 290, 113553. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Rayner, D.; Glamore, W.; Grandquist, L.; Ruprecht, J.; Waddington, K.; Khojasteh, D. Intertidal wetland vegetation dynamics under rising sea levels. Sci. Total Environ. 2021, 766, 144237. [Google Scholar] [CrossRef]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef]
- Reithmaier, G.M.S.; Cabral, A.; Akhand, A.; Bogard, M.J.; Borges, A.V.; Bouillon, S.; Burdige, D.J.; Call, M.; Chen, N.; Chen, X.; et al. Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. Nat. Commun. 2023, 14, 8196. [Google Scholar] [CrossRef] [PubMed]
- Saintilan, N.; Rogers, K.; Kelleway, J.J.; Ens, E.; Sloane, D.R. Climate change impacts on the coastal wetlands of Australia. Wetlands 2019, 39, 1145–1154. [Google Scholar] [CrossRef]
- Warnell, K.; Olander, L.; Currin, C. Sea level rise drives carbon and habitat loss in the U.S. mid-Atlantic coastal zone. PLoS Clim. 2022, 1, e0000044. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, J.; Wang, F.; Tian, Q.; Zheng, Y.; Chen, N. Hydrological connectivity affects nitrogen migration and retention in the land—river continuum. J. Environ. Manag. 2023, 326, 116816. [Google Scholar] [CrossRef] [PubMed]
- Covino, T. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 2017, 277, 133–144. [Google Scholar] [CrossRef]
- Zhang, H.; Mächler, E.; Morsdorf, F.; Niklaus, P.A.; Schaepman, M.E.; Altermatt, F. A spatial fingerprint of land-water linkage of biodiversity uncovered by remote sensing and environmental DNA. Sci. Total Environ. 2023, 867, 161365. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, J.; Saintilan, N.; Zhao, B.; Ouyang, Z.; Zhang, T.; Guo, H.; Hao, Y.; Zhao, F.; Liu, J.; et al. Integrating monthly spring tidal waves into estuarine carbon budget of meta-ecosystems. Sci. Total Environ. 2023, 905, 167026. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, B.; Saintilan, N.; Chen, J.; Wu, W.; Wen, L.; Zhao, F.; Zhang, T.; Geng, Z.; Yang, G.; et al. Rooting meta-ecosystems with reciprocal lateral carbon and nitrogen flows in a Yangtze coastal marsh. Environ. Res. Lett. 2024, 19, 104056. [Google Scholar] [CrossRef]
- Glamore, W.; Rayner, D.; Ruprecht, J.; Sadat-Noori, M.; Khojasteh, D. Eco-hydrology as a driver for tidal restoration: Observations from a Ramsar wetland in eastern Australia. PLoS ONE 2021, 16, e0254701. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Zhang, X.; Zhou, Y.; Tian, B.; Tang, Q. Integrated modeling analysis of estuarine responses to extreme hydrological events and sea-level rise. Estuar. Coast. Shelf Sci. 2021, 261, 107555. [Google Scholar] [CrossRef]
- Huang, G.; Hu, W.; Du, J.; Jia, Y.; Zhou, Z.; Lei, G.; Saintilan, N.; Wen, L.; Wang, Y. Identification and scenario-based optimization of ecological corridor networks for waterbirds in typical coastal wetlands. Ecol. Indic. 2025, 171, 113147. [Google Scholar] [CrossRef]
- Weis, J.S.; Watson, E.B.; Ravit, B.; Harman, C.; Yepsen, M. The status and future of tidal marshes in New Jersey faced with sea level rise. Anthr. Coasts 2021, 4, 168–192. [Google Scholar] [CrossRef]
- Moritsch, M.M.; Byrd, K.B.; Davis, M.; Good, A.; Drexler, J.Z.; Morris, J.T.; Woo, I.; Windham-Myers, L.; Grossman, E.; Nakai, G.; et al. Can coastal habitats rise to the challenge? Resilience of estuarine habitats, carbon accumulation, and economic value to sea-level rise in a puget sound estuary. Estuar. Coasts 2022, 45, 2293–2309. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Rankin, C.; Rayner, D.; Heimhuber, V.; Gaston, T.; Drummond, C.; Chalmers, A.; Khojasteh, D.; Glamore, W. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes. Sci. Rep. 2021, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Adam Langley, J.; Mozdzer, T.J.; Shepard, K.A.; Hagerty, S.B.; Patrick Megonigal, J. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Change Biol. 2013, 19, 1495–1503. [Google Scholar] [CrossRef]
- Akhand, A.; Watanabe, K.; Chanda, A.; Tokoro, T.; Chakraborty, K.; Moki, H.; Tanaya, T.; Ghosh, J.; Kuwae, T. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Sci. Total Environ. 2021, 752, 142190. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Biophysical Models and Applications in Ecosystem Analysis; Michigan State University Press: East Lansing, MI, USA, 2021; p. 172. [Google Scholar]
- Wang, Y.; Xue, Z.; Chen, J.; Chen, G. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015. Front. Earth Sci. 2019, 13, 92–110. [Google Scholar] [CrossRef]
- Rogers, K.; Kelleway, J.J.; Saintilan, N. The present, past and future of blue carbon. Camb. Prism. Coast. Futures 2023, 1, e30. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Guo, X.; Xiao, L.; Yang, Y.; Luo, Y.; Mishra, U.; Luo, Z. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Change 2024, 14, 98–105. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Qi, J.-G.; Gao, Y.; Ouyang, Z.-T.; Zeng, S.-L.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Harvey, E.; Marleau, J.N.; Gounand, I.; Leroux, S.J.; Firkowski, C.R.; Altermatt, F.; Guillaume Blanchet, F.; Cazelles, K.; Chu, C.; D’Aloia, C.C.; et al. A general meta-ecosystem model to predict ecosystem functions at landscape extents. Ecography 2023, 2023, e06790. [Google Scholar] [CrossRef]
- Angeler, D.G.; Heino, J.; Rubio-Ríos, J.; Casas, J.J. Connecting distinct realms along multiple dimensions: A meta-ecosystem resilience perspective. Sci. Total Environ. 2023, 889, 164169. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ouyang, Z.T.; Shao, C.L.; Chu, H.S.; Su, Y.J.; Guo, H.Q.; Chen, J.Q.; Zhao, B. Field observation of lateral detritus carbon flux in a coastal wetland. Wetlands 2018, 38, 613–625. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Chen, C.; Tian, B. Tracking the environmental impacts of ecological engineering on coastal wetlands with numerical modeling and remote sensing. J. Environ. Manag. 2022, 302, 113957. [Google Scholar] [CrossRef]
- Meng, L.; Huang, Y.; Zhu, N.; Chen, Z.; Li, X. Mapping properties of vegetation in a tidal salt marsh from multi-spectral satellite imagery using the SCOPE model. Int. J. Remote Sens. 2021, 42, 422–444. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, M.Q.; Zhao, B.; Guo, H.Q. Dependence of coastal wetland ecosystem respiration on temperature and tides: A temporal perspective. Biogeosciences 2014, 11, 539–545. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Y.; Duan, Z.; Tang, J. Capturing the spatiotemporal variations in the gross primary productivity in coastal wetlands by integrating eddy covariance, Landsat, and MODIS satellite data: A case study in the Yangtze Estuary, China. Ecol. Indic. 2023, 149, 110154. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Zhang, T.; Zhao, B.; McNulty, S.; Guo, H.; Zhao, F.; Zhuang, P. Lateral detrital C transfer across a Spartina alterniflora invaded estuarine wetland. Ecol. Process. 2021, 10, 70. [Google Scholar] [CrossRef]
- Zhao, B.; Yan, Y.; Guo, H.; He, M.; Gu, Y.; Li, B. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: An application in the Yangtze River Delta area. Ecol. Indic. 2009, 9, 346–356. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Ma, J.; Wang, X.-X.; Zhong, Q.-Y.; Zong, J.-M.; Wu, W.-B.; Wang, Q.; Zhao, B. Joint effect of Spartina alterniflora invasion and reclamation on the spatial and temporal dynamics of tidal flats in Yangtze River estuary. Remote Sens. 2020, 12, 1725. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, X.; Chen, B.; Ma, J.; Wang, X.; Zhang, Y.; Zhao, B.; Li, B. Tracking the phenology and expansion of Spartina alterniflora coastal wetland by time series MODIS and Landsat images. Multimed. Tools Appl. 2020, 79, 5175–5195. [Google Scholar] [CrossRef]
- Li, H.; Dai, S.Q.; Ouyang, Z.T.; Xie, X.; Guo, H.Q.; Gu, C.H.; Xiao, X.M.; Ge, Z.M.; Peng, C.H.; Zhao, B. Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry 2018, 137, 163–179. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Tian, B.; Zhou, C.; Wang, J.; Ge, Z.; Tang, J. Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal. Agric. For. Meteorol. 2020, 292–293, 108108. [Google Scholar] [CrossRef]
- Shahan, J.; Chu, H.S.; Windham-Myers, L.; Matsumura, M.; Carlin, J.; Eichelmann, E.; Stuart-Haentjens, E.; Bergamaschi, B.; Nakatsuka, K.; Sturtevant, C.; et al. Combining eddy covariance and chamber methods to better constrain CO2 and CH4 fluxes across a heterogeneous restored tidal wetland. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007112. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Chu, H.; Gottgens, J.F.; Chen, J.; Sun, G.; Desai, A.R.; Ouyang, Z.; Shao, C.; Czajkowski, K. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources. Glob. Change Biol. 2015, 21, 1165–1181. [Google Scholar] [CrossRef]
- Rüdiger, C.; Western, A.W.; Walker, J.P.; Smith, A.B.; Kalma, J.D.; Willgoose, G.R. Towards a general equation for frequency domain reflectometers. J. Hydrol. 2010, 383, 319–329. [Google Scholar] [CrossRef]
- Yan, Y.-E.; Ouyang, Z.-T.; Guo, H.-Q.; Jin, S.-S.; Zhao, B. Detecting the spatiotemporal changes of tidal flood in the estuarine wetland by using MODIS time series data. J. Hydrol. 2010, 384, 156–163. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Du, Y.; Han, P.; Huang, W. Monitoring spatial and temporal dynamics of flood regimes and their relation to wetland landscape patterns in Dongting lake from MODIS time-series imagery. Remote Sens. 2015, 7, 7494–7520. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Xiong, C.; Ma, H.; Liang, S.; He, T.; Zhang, Y.; Zhang, G.; Xu, J. Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the LSTM model. Sci. Data 2023, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, R.; Chen, J.; Wei, X.; Qi, L.; Zhao, L. A global annual fractional tree cover dataset during 2000–2021 generated from realigned MODIS seasonal data. Sci. Data 2024, 11, 832. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pahlevan, N.; Roger, J.-C.; Ahmad, Z. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Opt. Express 2017, 25, 6015–6035. [Google Scholar] [CrossRef] [PubMed]
- Maluleke, A.; Feig, G.; Brümmer, C.; Rybchak, O.; Midgley, G. Evaluation of Selected Sentinel-2 Remotely Sensed Vegetation Indices and MODIS GPP in Representing Productivity in Semi-Arid South African Ecosystems. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007728. [Google Scholar] [CrossRef]
- Alonso, A.; Muñoz-Carpena, R.; Kaplan, D. Coupling high-resolution field monitoring and MODIS for reconstructing wetland historical hydroperiod at a high temporal frequency. Remote Sens. Environ. 2020, 247, 111807. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.-L.; Fang, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Saintilan, N.; Kovalenko, K.E.; Guntenspergen, G.; Rogers, K.; Lynch, J.C.; Cahoon, D.R.; Lovelock, C.E.; Friess, D.A.; Ashe, E.; Krauss, K.W.; et al. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 2022, 377, 523–527. [Google Scholar] [CrossRef]
- Luo, Y.; Melillo, J.; Niu, S.; Beier, C.; Clark, J.S.; Classen, A.T.; Davidson, E.; Dukes, J.S.; Evans, R.D.; Field, C.B.; et al. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob. Change Biol. 2011, 17, 843–854. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of surface water and floods with multispectral satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Huyzentruyt, M.; Belliard, J.-P.; Saintilan, N.; Temmerman, S. Identifying drivers of global spatial variability in organic carbon sequestration in tidal marsh sediments. Sci. Total Environ. 2024, 957, 177746. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.W.; Stillwell, C.C. Predicting inundation dynamics and hydroperiods of small, isolated wetlands using a machine learning approach. Wetlands 2023, 43, 63. [Google Scholar] [CrossRef]
- Sun, J.; Tang, C.; Mu, K.; Li, Y.; Zheng, X.; Zou, T. Tidal flat extraction and analysis in China based on multi-source remote sensing image collection and MSIC-OA algorithm. Remote Sens. 2024, 16, 3607. [Google Scholar] [CrossRef]
- Lima, M.J.; Carrasco, A.R.; Ferreira, Ó. A walk in wetlands morphology and inundation patterns. Estuar. Coast. Shelf Sci. 2025, 314, 109115. [Google Scholar] [CrossRef]
- Wen, L.; Hughes, M.G. Coastal wetland responses to sea level rise: The losers and winners based on hydro-geomorphological settings. Remote Sens. 2022, 14, 1888. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, R.-H.; Ouyang, Z.-T.; Shao, C.-L.; Chen, J.-Q.; Zhang, T.-T.; Guo, H.-Q.; Tang, J.-W.; Zhao, F.; Zhuang, P.; et al. Enhanced lateral exchange of carbon and nitrogen in a coastal wetland with invasive Spartina alterniflora. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005459. [Google Scholar] [CrossRef]
- Vulliet, C.; Koci, J.; Sheaves, M.; Waltham, N. Linking tidal wetland vegetation mosaics to micro-topography and hydroperiod in a tropical estuary. Mar. Environ. Res. 2024, 197, 106485. [Google Scholar] [CrossRef]
- Cui, S.; Liu, P.; Guo, H.; Nielsen, C.K.; Pullens, J.W.M.; Chen, Q.; Pugliese, L.; Wu, S. Wetland hydrological dynamics and methane emissions. Commun. Earth Environ. 2024, 5, 470. [Google Scholar] [CrossRef]
- Zhao, W.; Li, X.; Costa, M.D.P.; Wartman, M.; Lin, S.; Wang, J.; Yuan, L.; Wang, T.; Yang, H.; Qin, Y.; et al. Modelling the spatiotemporal dynamics of blue carbon stocks in tidal marsh under Spartina alterniflora invasion. Ecol. Indic. 2024, 166, 112426. [Google Scholar] [CrossRef]
- Guimond, J.A.; Michael, H.A. Effects of marsh migration on flooding, saltwater intrusion, and crop yield in coastal agricultural land subject to storm surge inundation. Water Resour. Res. 2021, 57, e2020WR028326. [Google Scholar] [CrossRef]
- Nordio, G.; Frederiks, R.; Hingst, M.; Carr, J.; Kirwan, M.; Gedan, K.; Michael, H.; Fagherazzi, S. Frequent storm surges affect the groundwater of coastal ecosystems. Geophys. Res. Lett. 2023, 50, e2022GL100191. [Google Scholar] [CrossRef]
- Valentine, K.; Herbert, E.R.; Walters, D.C.; Chen, Y.; Smith, A.J.; Kirwan, M.L. Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink. Nat. Commun. 2023, 14, 1137. [Google Scholar] [CrossRef]
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B.; et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zeng, S.; Gao, M.; Chen, G.; Zhu, H.; Ye, Y. Potential effects of sea level rise on the soil-atmosphere greenhouse gas emissions in Kandelia obovata mangrove forests. Acta Oceanol. Sin. 2023, 42, 25–32. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B.; Yu, D.; Tam, N.F.Y.; Ye, Y.; Chen, S. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environ. Res. Lett. 2016, 11, 124019. [Google Scholar] [CrossRef]
- Wei, S.; Han, G.; Chu, X.; Song, W.; He, W.; Xia, J.; Wu, H. Effect of tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in the Yellow River Delta. Estuar. Coast. Shelf Sci. 2020, 232, 106512. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Moftakhari, H.; Muñoz, D.F.; Sweet, W.; Moradkhani, H. Establishing flood thresholds for sea level rise impact communication. Nat. Commun. 2024, 15, 4251. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-E.; Guo, H.-Q.; Gao, Y.; Zhao, B.; Chen, J.-Q.; Li, B.; Chen, J.-K. Variations of net ecosystem CO2 exchange in a tidal inundated wetland: Coupling MODIS and tower-based fluxes. J. Geophys. Res. Atmos. 2010, 115, D15102. [Google Scholar] [CrossRef]
- Lai, J.; Huang, Y. Potential of solar-induced chlorophyll fluorescence for monitoring gross primary productivity and evapotranspiration in tidally-influenced coastal salt marshes. Remote Sens. 2024, 16, 4636. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundberg, K. Responses of coastal wetlands to rising sea-level revisited: The importance of organic production. Estuar. Coasts 2024, 47, 1735–1749. [Google Scholar] [CrossRef]
- Ganju, N.K.; Defne, Z.; Kirwan, M.L.; Fagherazzi, S.; D’Alpaos, A.; Carniello, L. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 2017, 8, 14156. [Google Scholar] [CrossRef] [PubMed]
Site | H | L |
---|---|---|
Reed | ||
Relative elevation (m) | 1.20 | 0.80 |
Elevation above mean sea level (m) | 3.2 | 2.8 |
Distance to the sea wall (km) | 0.5 | 1.6 |
Aboveground biomass (g m−2) | 1170.0 ± 103.1 | 400.7 ± 86.8 ** |
Dominated species | Spartina alterniflora | Spartina alterniflora |
Phragmites australis | Phragmites australis | |
Scirpus mariqueter | ||
Soil total C (kg C m−3) | 18.24 | 14.77 |
Soil total N (kg N m−3) | 0.84 | 0.59 |
Leaf area index (m2 m−2) | 4.70 | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhou, B.-J.; Zhao, B.; Chen, J.; Saintilan, N.; Macreadie, P.I.; Akhand, A.; Zhao, F.; Zhang, T.-T.; Yang, S.-L.; et al. Lateral Responses of Coastal Intertidal Meta-Ecosystems to Sea-Level Rise: Lessons from the Yangtze Estuary. Remote Sens. 2025, 17, 3109. https://doi.org/10.3390/rs17173109
Gao Y, Zhou B-J, Zhao B, Chen J, Saintilan N, Macreadie PI, Akhand A, Zhao F, Zhang T-T, Yang S-L, et al. Lateral Responses of Coastal Intertidal Meta-Ecosystems to Sea-Level Rise: Lessons from the Yangtze Estuary. Remote Sensing. 2025; 17(17):3109. https://doi.org/10.3390/rs17173109
Chicago/Turabian StyleGao, Yu, Bing-Jiang Zhou, Bin Zhao, Jiquan Chen, Neil Saintilan, Peter I. Macreadie, Anirban Akhand, Feng Zhao, Ting-Ting Zhang, Sheng-Long Yang, and et al. 2025. "Lateral Responses of Coastal Intertidal Meta-Ecosystems to Sea-Level Rise: Lessons from the Yangtze Estuary" Remote Sensing 17, no. 17: 3109. https://doi.org/10.3390/rs17173109
APA StyleGao, Y., Zhou, B.-J., Zhao, B., Chen, J., Saintilan, N., Macreadie, P. I., Akhand, A., Zhao, F., Zhang, T.-T., Yang, S.-L., Wang, S.-K., Ren, J.-L., & Zhuang, P. (2025). Lateral Responses of Coastal Intertidal Meta-Ecosystems to Sea-Level Rise: Lessons from the Yangtze Estuary. Remote Sensing, 17(17), 3109. https://doi.org/10.3390/rs17173109