Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Longwave radiation: Rapid Radiative Transfer Model for GCMs (RRTMG) scheme [30];
- Shortwave radiation: Dudhia scheme [31];
- Boundary layer: Yonsei University (YSU) scheme [32];
- Surface layer: Monin–Obukhov scheme [33];
- Land surface: Unified Noah Land Surface Model (LSM) [34];
- Cumulus convection: KainFritsch (KF) scheme [35];
- Microphysics: WRF Single-Moment 6-Class Microphysical (WSM6) scheme [36].
2.2. Data Description
2.2.1. FY-4B/GIIRS
2.2.2. IASI
2.2.3. AMSU-A
2.3. Two Super Typhoons
3. Pre-Experiment Processing
3.1. Channel Selection
3.2. Quality Control and Bias Correction
4. Results
4.1. Wind Field Analysis
4.2. Track Error Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Channel_ID | Frequency | Channel_ID | Frequency | Channel_ID | Frequency | Channel_ID | Frequency |
---|---|---|---|---|---|---|---|
1 | 650 | 70 | 667.25 | 130 | 682.25 | 192 | 697.75 |
5 | 651 | 71 | 667.5 | 131 | 682.5 | 193 | 698 |
9 | 652 | 72 | 667.75 | 132 | 682.75 | 196 | 698.75 |
11 | 652.5 | 73 | 668 | 134 | 683.25 | 198 | 699.25 |
13 | 653 | 75 | 668.5 | 135 | 683.5 | 199 | 699.5 |
15 | 653.5 | 76 | 668.75 | 136 | 683.75 | 200 | 699.75 |
16 | 653.75 | 77 | 669 | 137 | 684 | 201 | 700 |
17 | 654 | 79 | 669.5 | 138 | 684.25 | 202 | 700.25 |
19 | 654.5 | 81 | 670 | 139 | 684.5 | 205 | 701 |
20 | 654.75 | 85 | 671 | 140 | 684.75 | 206 | 701.25 |
22 | 655.25 | 86 | 671.25 | 142 | 685.25 | 208 | 701.75 |
23 | 655.5 | 87 | 671.5 | 143 | 685.5 | 209 | 702 |
24 | 655.75 | 88 | 671.75 | 145 | 686 | 211 | 702.5 |
27 | 656.5 | 90 | 672.25 | 146 | 686.25 | 230 | 707.25 |
28 | 656.75 | 91 | 672.5 | 147 | 686.5 | 237 | 709 |
30 | 657.25 | 93 | 673 | 148 | 686.75 | 239 | 709.5 |
32 | 657.75 | 94 | 673.25 | 149 | 687 | 241 | 710 |
34 | 658.25 | 95 | 673.5 | 150 | 687.25 | 245 | 711 |
43 | 660.5 | 97 | 674 | 151 | 687.5 | 254 | 713.25 |
44 | 660.75 | 99 | 674.5 | 152 | 687.75 | 256 | 713.75 |
45 | 661 | 101 | 675 | 153 | 688 | 257 | 714 |
47 | 661.5 | 102 | 675.25 | 154 | 688.25 | 259 | 714.5 |
48 | 661.75 | 104 | 675.75 | 155 | 688.5 | 260 | 714.75 |
49 | 662 | 105 | 676 | 157 | 689 | 261 | 715 |
50 | 662.25 | 106 | 676.25 | 159 | 689.5 | 262 | 715.25 |
51 | 662.5 | 107 | 676.5 | 161 | 690 | 263 | 715.5 |
52 | 662.75 | 108 | 676.75 | 162 | 690.25 | 265 | 716 |
53 | 663 | 109 | 677 | 165 | 691 | 266 | 716.25 |
54 | 663.25 | 111 | 677.5 | 166 | 691.25 | 272 | 717.75 |
55 | 663.5 | 112 | 677.75 | 167 | 691.5 | 274 | 718.25 |
56 | 663.75 | 113 | 678 | 169 | 692 | 276 | 718.75 |
57 | 664 | 114 | 678.25 | 170 | 692.25 | 280 | 719.75 |
58 | 664.25 | 115 | 678.5 | 172 | 692.75 | 281 | 720 |
59 | 664.5 | 116 | 678.75 | 174 | 693.25 | 282 | 720.25 |
60 | 664.75 | 118 | 679.25 | 180 | 694.75 | 283 | 720.5 |
61 | 665 | 120 | 679.75 | 181 | 695 | 284 | 720.75 |
63 | 665.5 | 121 | 680 | 182 | 695.25 | 285 | 721 |
64 | 665.75 | 122 | 680.25 | 183 | 695.5 | 286 | 721.25 |
65 | 666 | 123 | 680.5 | 184 | 695.75 | 288 | 721.75 |
66 | 666.25 | 124 | 680.75 | 185 | 696 | 296 | 723.75 |
68 | 666.75 | 125 | 681 | 186 | 696.25 | ||
69 | 667 | 129 | 682 | 191 | 697.5 |
References
- Zhang, F.; Weng, Y.; Sippel, J.A.; Meng, Z.; Bishop, C.H. Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Weather Rev. 2009, 137, 2105–2125. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P. A Review on Geostationary Earth Orbit Microwave Atmospheric Sounding Technology. Remote Sens. Land Resour. 2017, 29, 1–5. [Google Scholar]
- Yu, Z.W.; Liu, J.W.; Huang, J.P.; Liu, M.Y. Assimilation Experiment of AMSR2 Microwave Imager Data and Its Impact on Typhoon Forecasting. Meteorol. Hydrol. Mar. Instrum. 2017, 34, 1–8. [Google Scholar]
- Li, N.; Zhang, S.W.; He, J.Y. Variational Assimilation of Satellite Microwave Data during Typhoon Landfall. In Proceedings of the 35th Annual Meeting of the Chinese Meteorological Society, S9 Satellite Data Assimilation, Hefei, China, 24–26 October 2018; p. 4. [Google Scholar]
- Shu, A.Q.; Xu, D.M.; Li, H.; Wu, H.Y.; Shen, F.F.; Deng, H.; Bai, Y.W. Impact of Direct Assimilation of FY-3D Satellite MWHS-2 Radiance Data on the Forecast of Typhoon “Mina”. J. Trop. Oceanogr. 2022, 41, 17–28. [Google Scholar]
- Lin, M.; Zhang, Y.; Song, Q.; Xie, X.; Zou, J. An Application Study of the HY-2 Scatterometer on Monitoring Typhoon Events in the Northwest Pacific. Strateg. Study CAE 2014, 16, 46–53. [Google Scholar]
- Lin, W.; Pan, C. Error Analysis of Multi-Source Spaceborne Microwave Scatterometer Sea Surface Wind Fields. J. Mar. Meteorol. 2025, 45, 51–61. [Google Scholar]
- Sun, Z.; Bai, L.; Zhu, X.; Huang, X.; Jin, R.; Yu, H.; Tang, J. The Extraordinarily Large Vortex Structure of Typhoon In-fa (2021) Observed by Spaceborne Microwave Radiometer and Synthetic Aperture Radar. Atmos. Res. 2023, 292, 106837. [Google Scholar] [CrossRef]
- Smith, L.W.; Lü, Y. Can Satellite-Observed Atmospheric Data Make Little Difference or Play a Key Role in Improving Weather Forecasts? Meteorol. Sci. Technol. 1992, 4, 7–17. [Google Scholar]
- Strow, L.L.; Hannon, S.E.; De Souza-Machado, S.; Motteler, H.E.; Tobin, D. An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 303–313. [Google Scholar] [CrossRef]
- Li, J.; Liu, H. Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Smith, A.; Atkinson, N.; Bell, W.; Doherty, A. An Initial Assessment of Observations from the Suomi-NPP Satellite: Data from the Cross-track Infrared Sounder (CrIS). Atmos. Sci. Lett. 2015, 16, 260–266. [Google Scholar] [CrossRef]
- Zavyalov, V.; Esplin, M.; Scott, D.; Esplin, B.; Bingham, G.; Hoffman, E.; Lietzke, C.; Predina, J.; Frain, R.; Suwinski, L.; et al. Noise performance of the CrIS instrument. J. Geophys. Res. Atmos. 2013, 118, 13108–13120. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.M.; Cao, X.Q.; Zhao, Y.L.; Duan, B.H. Impact of Assimilating IASI Data on the Forecast of Typhoons “Hongxia” and “Meranti”. J. Trop. Meteorol. 2017, 33, 500–509. [Google Scholar]
- Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C. Hyperspectral Microwave Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [Google Scholar] [CrossRef]
- Smith, W.L.; Harrison, F.W.; Hinton, D.E.; Revercomb, H.E.; Bingham, G.E.; Petersen, R.; Dodge, J.C. GIFTS—The Precursor Geostationary Satellite Component of the Future Earth Observing System. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; pp. 357–359. [Google Scholar]
- Smith, W.L.; Harrison, F.W.; Revercomb, H.E.; Bingham, G.E. Geostationary Fourier Transform Spectrometer (GIFTS)—The New Millennium Earth Observing-3 Mission. In International Radiation Symposium (IRS 2000): Current Problems in Atmospheric Radiation; Health & Environmental Research Online (HERO): Durham, NC, USA, 2001; pp. 81–84. [Google Scholar]
- Nong, C.; Yin, Q.; Song, C.; Shu, J. Detection Sensitivity Analysis of the Geostationary Interferometric Infrared Sounder (GIIRS) Onboard the FY-4A Meteorological Satellite. J. Infrared Millim. Waves 2021, 40, 353–362. [Google Scholar]
- Yin, R.; Han, W.; Gao, Z.; Di, D. Evaluation of FY-4A’s Geostationary Interferometric Infrared Sounder (GIIRS) Long-Wave Temperature Sounding Channels Using the GRAPES Global 4D-Var. Q. J. R. Meteorol. Soc. 2020, 146, 1459–1476. [Google Scholar] [CrossRef]
- Xu, X.; Han, W.; Gao, Z.; Li, J.; Yin, R. Retrieval of Atmospheric Temperature Profiles from FY-4A/GIIRS Hyperspectral Data Based on TPE-MLP: Analysis of Retrieval Accuracy and Influencing Factors. Remote Sens. 2024, 16, 1976. [Google Scholar] [CrossRef]
- Smith Sr, W.L.; Zhang, Q.; Shao, M.; Weisz, E. Improved Severe Weather Forecasts Using LEO and GEO Satellite Soundings. J. Atmos. Ocean. Technol. 2020, 37, 1203–1218. [Google Scholar] [CrossRef]
- Wang, G.; Shao, L.Y.; Ding, W.D.; Chen, J.; Liu, N.; Xie, F. Optimal Selection of Medium-Wave Channels in Hyperspectral GIIRS and Its Influence on Cloud Detection. Infrared 2021, 42, 36–42. [Google Scholar]
- Yin, R.; Han, W.; Gao, Z.; Li, J. Impact of high temporal resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) radiance measurements on Typhoon forecasts: Maria (2018) case with GRAPES global 4D-Var assimilation system. Geophys. Res. Lett. 2021, 48, e2021GL093672. [Google Scholar] [CrossRef]
- Liu, H.; Bai, W.; Ma, G.; Wang, G.; Zhang, P.; Zhang, W.; Li, J.; Wang, X.; Ao, Y.; Shen, Q. Neural Network Temperature and Moisture Retrieval Technique for Real-Time Processing of FengYun-4B/GIIRS Hyperspectral Radiances. Meteorol. Atmos. Phys. 2024, 136, 36. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.; Liu, M.; Song, S.; Chen, W.; Li, Z.; Wang, L. A New Way to Obtain the Weighted Mean Temperature (Tm): Using the Geostationary Interferometric Infrared Sounder (GIIRS) Equipped on FengYun Satellite. Atmos. Res. 2025, 318, 107997. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Li, J.; Di, D. Retrieval of Hourly Three—Dimensional Horizontal Winds using Combined GIIRS Radiance Observations from Fengyun-4A and Fengyun-4B. In Proceedings of the 104th AMS Annual Meeting, Baltimore, MD, USA, 28 January–1 February 2024. [Google Scholar]
- Gao, Y.; Wang, X.; Mao, D. Performance of FY-4B GIIRS Temperature Products under Cloudy Skies and Their Enhancement of Surface Precipitation Type Forecasting. Atmos. Res. 2024, 302, 107305. [Google Scholar] [CrossRef]
- Yin, R.; Han, W. Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024. IEEE Geosci. Remote Sens. Lett. 2025, 22, 5500805. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Updated Daily. Available online: https://rda.ucar.edu/datasets/d083002/ (accessed on 30 August 2025).
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Pahlow, M.; Parlange, M.B.; Porté-Agel, F. On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound. Layer Meteorol. 2001, 99, 225–248. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites—FengYun 4 (FY-4). Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- NSMC. Geostationary Interferometric Infrared Sounder (GIIRS) Technical Specifications. National Satellite Meteorological Center. Available online: http://www.nsmc.org.cn/nsmc/cn/instrument/GIIRS.html (accessed on 21 May 2025).
- Du, H.; Huang, S.; Shi, H. Optimal Channel Selection Method and Experiment for Hyperspectral-Resolution Remote Sensing Data. Acta Phys. Sin. 2008, 57, 7685–7692. [Google Scholar]
- Blumstein, D.; Chalon, G.; Carlier, T.; Christian, B.; Philippe, H.; Thierry, M.; Ponce, G.; Thierry, P.; Bernard, T.; Denis, S.; et al. IASI instrument: Technical overview and measured performances. Proc. SPIE 2004, 5543, 196–207. [Google Scholar]
- Levens, P.J.; Migliorini, S. Assimilation of Transformed Retrievals from IASI Radiances Versus Direct Assimilation of IASI Radiances at the Met Office. Q. J. R. Meteorol. Soc. 2024, 150, 3601–3622. [Google Scholar] [CrossRef]
- Salonen, K.; August, T.; Hultberg, T.; Benedetti, A.; McNally, A. Assimilation of IASI Temperature and Humidity Retrievals with Scene-Dependent Observation Operators in Clear-Sky Scenes. Q. J. R. Meteorol. Soc. 2024, 150, 3238–3250. [Google Scholar] [CrossRef]
- European Space Agency. About IASI. ESA. Available online: https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/About_IASI (accessed on 21 May 2025).
- Boukabara, S.A.; Weng, F.; Liu, Q. Passive Microwave Remote Sensing of Extreme Weather Events Using NOAA-18 AMSUA and MHS. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2228–2246. [Google Scholar] [CrossRef]
- EUMETSAT. Advanced Microwave Sounding Unit-A (AMSU-A) Technical Specifications. NWP SAF. Available online: https://nwp-saf.eumetsat.int/site/software/aapp/aapp-overview/amsu-a/ (accessed on 21 May 2025).
- Liu, D.; Xiang, C.Y.; Zhang, L.; Xu, Y.L.; Luo, Q. Main characteristics of Typhoon Doksuri (2305) and analysis of the difficulties in track and intensity forecasting. J. Mar. Meteorol. 2023, 43, 1–10. [Google Scholar]
- Jia, L.; Xiang, C.Y.; Lv, X.Y.; Zhu, W.J. Characteristics and causes of different types of precipitation under the impact of Super Typhoon Gaemi (2403). J. Mar. Meteorol. 2025, 45, 1–11. [Google Scholar]
- Hilton, F.; Collard, A.; Guidard, V.; Randriamampianina, R.; Schwaerz, M. Assimilation of IASI Radiances at European NWP Centres. In Proceedings of the Workshop on the Assimilation of IASI Data in NWP, Reading, UK, 6–8 October 2009; ECMWF: Reading, UK, 2009; pp. 6–8. [Google Scholar]
- Zhao, H.; Qin, Z.; Wang, J.; Liu, Y. Research on Application of EOF Quality Control in Surface Observation Data within Variational Data Assimilation System. Acta Meteorol. Sin. 2015, 73, 749–765. [Google Scholar]
- McNally, A.P.; Watts, P.D. A cloud detection algorithm for high-spectral-resolution infrared sounders. Q. J. R. Meteorol. Soc. 2003, 129, 3411–3423. [Google Scholar] [CrossRef]
- Yan, X.; Chen, Y.; Ma, G.; Qin, L.; Zhang, P.; Gong, X. A 3D Cloud Detection Method for FY-4A GIIRS and its Application in Operational Numerical Weather Prediction System. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4105213. [Google Scholar]
- Dee, D.P. Bias and data assimilation. Q. J. Roy. Meteorol. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Z.; Weng, F.; Dong, P.; Huang, W.; Zhu, J. Impacts of Direct Assimilation of FY-4A/GIIRS Long-Wave Temperature Sounding Channel Data on Forecasting Typhoon In-fa (2021). Remote Sens. 2023, 15, 355. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Han, Y.; Dong, P.; Huang, W. Performances between the FY-4A/GIIRS and FY-4B/GIIRS Long-Wave Infrared (LWIR) Channels under Clear-Sky and All-Sky Conditions. Q. J. R. Meteorol. Soc. 2023, 149, 1612–1628. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, B.; Zhang, L.; Liu, J.; Liu, Y.; Gong, J.; Xu, S.; Wang, Y.; Huang, W.; Liu, L.; et al. Assimilating AMSU-A Radiance Observations with an Ensemble Four-Dimensional Variational (En4DVar) Hybrid Data Assimilation System. Remote Sens. 2023, 15, 3476. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Q.; Lv, X.; Shen, W. Assimilation of FY-4A GIIRS Radiance Observations in the Forecast of Typhoon Bavi. Front. Earth Sci. 2023, 10, 1033474. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Kumar, P. Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-Sky-Simulated Brightness Temperature. Remote Sens. 2023, 15, 4035. [Google Scholar] [CrossRef]
- Ding, C.H.; Li, J.N.; Zhao, Y.J.; Feng, Y.R. Influence of Boundary-Layer Parameterization Schemes on the Simulation of Autumn Typhoon Sarika (2016) in the South China Sea. J. Trop. Meteorol. 2018, 34, 657–673. [Google Scholar]
- Yang, Q.; Miao, J.; Wang, Y. Influence of Boundary-Layer Parameterization on the Simulation of Sea-Breeze Circulation Structure over Hainan Island. J. Trop. Meteorol. 2019, 35, 234–252. [Google Scholar]
- Langousis, A.; Veneziano, D.; Chen, S. Boundary Layer Model for Moving Tropical Cyclones. In Tropical Cyclone Research and Review; Springer: Boston, MA, USA, 2008; pp. 257–273. [Google Scholar]
- Mejia, J.F.; Murillo, J.; Galvez, J.M.; Douglas, M.W. Accuracy of the NCAR global tropospheric analysis (FNL) over Central South America based upon upper air observations collected during the SALLJEX. In Proceedings of the 8 ICSHMO, Foz do Iguaçu, Brazil, 24–28 April 2006; Volume 8, pp. 1759–1764. [Google Scholar]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar]
- Zhu, S.; Yin, Q.; Zhang, G.-X. Study on thermal infrared data assimilation of multi-sources polar orbit meteorological satellite. J. Infrared Millim. Waves 2008, 27, 365–369. [Google Scholar]
- Dong, H.P.; Yuan, B.; Luo, Y. Application of multi-source data cycling assimilation in the forecast of Typhoon Trami. J. Trop. Meteorol. 2017, 33, 433–441. [Google Scholar]
- Ren, J.; Pan, X. Research on data assimilation of multi-source remote sensing precipitation data based on the WRF model. Remote Sens. Technol. Appl. 2017, 32, 593–605. [Google Scholar]
Experiment Name | Obs | Data Assimilation Method | Typhoon |
---|---|---|---|
GIIRS | GIIRS + con-obs | Refinement quality control and 3D cloud method | Gaemi and Doksuri |
AMSU-A | AMSU-A + con-obs | WRFDA default method | Gaemi and Doksuri |
IASI | IASI + con-obs | WRFDA default method | Gaemi and Doksuri |
GIIRS | FY-4B | FY-4A |
---|---|---|
Spectral Range | LWIR: 680~1130 cm−1 MWIR: 1650–2250 cm−1 | LWIR: 700~1130 cm−1 MWIR: 1650–2250 cm−1 |
Spectral Resolution | <0.625 cm−1 | 0.625 cm−1 |
Spatial Resolution | 12 km | 16 km |
Temporal Resolution | 45 min | 1 h |
Radiometric Calibration Accuracy | 0.7 K | 1.5 K |
Spectral Calibration Accuracy | <10 ppm | 10 ppm |
Channel_id | Frequency (GHz) | Ch_Use (−1/1) |
---|---|---|
1 | 23.8 | −1 |
2 | 31.4 | −1 |
3 | 50.3 | −1 |
4 | 52.8 | −1 |
5 | 53.596 ± 0.115 | 1 |
6 | 54.4 | 1 |
7 | 54.94 | 1 |
8 | 55.5 | 1 |
9 | 57.29 = f | 1 |
10 | f ± 0.217 | −1 |
11 | f ± 0.3222 ± 0.048 | −1 |
12 | f ± 0.322 ± 0.022 | −1 |
13 | f ± 0.3222 ± 0.010 | −1 |
14 | f ± 0.3222 ± 0.0045 | −1 |
15 | 89.0 | −1 |
Ordinal | Detection Method | Quality Control Options | Quality Control Criteria | Mark |
---|---|---|---|---|
1 | Pixel Detection | Underlying Surface Detection | surf_type = 1 | 1 |
3 | Scanning Angle Detection | satzen > 70 | 1 | |
4 | Scan Array Limb Effect Detection | iscanpos = 1–16, 30–35, 62–67, 94–99, 113–128 | 1 | |
5 | Channel Detection | Outlier Channel Rejection | channel = 33–34, 65, 70, 72, 77, 79, 89 | 1 |
6 | Channel Rejection | channel = 1–35, 37, 39–40, 42, 44, 45, 49–53, 55, 58, 60, 62–101, 103, 106, 108, 113–115, 118, 123, 125–129, 131, 133–140, 132, 143, 146–153, 158, 159, 161–167, 169–256, 258–276, 278–721 | 1 | |
7 | Extreme Value Detection | rad < 150 or rad > 350 | 1 | |
8 | Bi-weight Robust Quality Control | Z > 3.0 | 1 | |
9 | (OMB) Threshold Control | |drad| > 1.5 or |drad + bias| > 2.0 | 1 |
Experiment | Doksuri | Gaemi |
---|---|---|
AMSU-A | 133.23 km | 133.95 km |
GIIRS | 115.34 km | 62.13 km |
IASI | 135.84 km | 90.22 km |
CTL | 172.96 km | 63.91 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.; Yu, Y.; Bai, H.; Zhang, W.; Zhao, Y.; Leng, H.; Wang, P. Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts. Remote Sens. 2025, 17, 3105. https://doi.org/10.3390/rs17173105
Tao S, Yu Y, Bai H, Zhang W, Zhao Y, Leng H, Wang P. Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts. Remote Sensing. 2025; 17(17):3105. https://doi.org/10.3390/rs17173105
Chicago/Turabian StyleTao, Shiyuan, Yi Yu, Haokun Bai, Weimin Zhang, Yanlai Zhao, Hongze Leng, and Pinqiang Wang. 2025. "Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts" Remote Sensing 17, no. 17: 3105. https://doi.org/10.3390/rs17173105
APA StyleTao, S., Yu, Y., Bai, H., Zhang, W., Zhao, Y., Leng, H., & Wang, P. (2025). Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts. Remote Sensing, 17(17), 3105. https://doi.org/10.3390/rs17173105