A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint
Abstract
1. Introduction
2. Materials and Methods
2.1. Previous Work: LDEMGAN1.0
2.2. Improvement in This Work: LDEMGAN2.0
2.3. DEM Self-Similarity Loss
2.3.1. Self-Similarity Principle
2.3.2. Binary Mask Image
2.3.3. Self-Similarity Graph
2.3.4. Loss Function
2.4. Network Training
3. Results
3.1. Experimental Area
3.2. Evaluation Indicators
3.3. Reconstruction and Analysis
3.3.1. Analysis and Evaluation of Overall Reconstruction Results
3.3.2. Detailed Analysis of the Reconstruction Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASP | Ames Stereo Pipeline |
CNN | Convolutional neural network |
DEM | Digital elevation model |
DTM | Digital terrain model |
DOM | Digital orthophoto map |
GAN | Generative adversarial network |
KL | Kullback–Leibler |
LE | Left-experimental data record |
LOLA | Lunar Orbiter Laser Altimeter |
LROC | Lunar Reconnaissance Orbiter camera |
MAE | Mean absolute error |
NAC | Narrow angle camera |
NeRF | Neural radiance field |
RE | Right-experimental data record |
RMSE | Root mean squared error |
SFS | Shape from shading |
SAFS | Shape and albedo from shading |
SSL | Self-similarity loss |
SSG | Self-similarity graph |
SLDEM 2015 | LRO LOLA Digital Elevation Model Co-registered with Selene Data 2015 |
SSIM | Structural similarity index measure |
References
- Liu, J.J.; Zeng, X.G.; Li, C.L.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.X.; Chen, W.L.; Zuo, W.; Liu, Y.X.; et al. Landing Site Selection and Overview of China’s Lunar Landing Missions. Space Sci. Rev. 2021, 217, 6–30. [Google Scholar] [CrossRef]
- Di, K.C.; Liu, B.; Liu, Z.Q.; Zou, Y.L. Review and prospect of lunar mapping using remote sensing data. J. Remote Sens. 2016, 20, 1230–1242. [Google Scholar]
- Formisano, M.; De Sanctis, M.C.; Boazman, S.; Frigeri, A.; Heather, D.; Magni, G.; Teodori, M.; De Angelis, S.; Ferrari, M. Thermal modeling of the lunar South Pole: Application to the PROSPECT landing site. Planet. Space Sci. 2024, 251, 105969. [Google Scholar] [CrossRef]
- Fassett, C.I.; Head, J.W.; Kadish, S.J.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. Planets 2012, 117, E00H06. [Google Scholar] [CrossRef]
- Wu, B.; Li, F.; Ye, L.; Qiao, S.; Huang, J.; Wu, X.Y.; Zhang, H. Topographic mapping and analysis at the landing site of Chang’E-3 on the moon. Earth Planet. Sci. Lett. 2014, 405, 257–273. [Google Scholar] [CrossRef]
- Wu, B.; Li, F.; Hu, H.; Zhao, Y.; Wang, Y.R.; Xiao, P.P.; Li, Y.; Liu, W.C.; Chen, L.; Ge, X.M.; et al. Topographic and geomorphological mapping and analysis of the Chang’E-4 landing site on the far side of the Moon. Photogramm. Eng. Remote Sens. 2020, 86, 247–258. [Google Scholar] [CrossRef]
- Di, K.C.; Liu, Z.Q.; Wan, W.H.; Peng, M.; Liu, B.; Wang, Y.X.; Gou, S.; Yue, Z.Y. Geospatial technologies for Chang’e-3 and Chang’e-4 lunar rover missions. Geo-Spat. Inf. Sci. 2020, 23, 87–97. [Google Scholar] [CrossRef]
- Wu, B.; Guo, J.; Zhang, Y.; King, B.A.; Li, Z.; Chen, Y. Integration of Chang’E-1 Imagery and Laser Altimeter Data for Precision Lunar Topographic Modeling. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4889–4903. [Google Scholar]
- Liu, C.B.; Bo, Z.; Zhang, P.; Zhou, M.Y.; Liu, W.Y.; Huang, R.; Niu, R.; Ye, Z.; Yang, H.Z.; Liu, S.J.; et al. Current status and future prospects of lunar topographic remote sensing and mapping. J. Geo-Inf. Sci. 2025, 27, 801–819. [Google Scholar]
- Shan, J.; Tian, X.; Li, S.; Li, R.F. Advances of spaceborne laser altimetry technology. Acta Geod. Cartogr. Sin. 2022, 51, 964–982. [Google Scholar]
- Wu, B.; Hu, H.; Guo, J. Integration of Chang’E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling. Earth Planet. Sci. Lett. 2014, 391, 1–15. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Lemoine, F.G.; Mazarico, E.; Torrence, M.H.; McGarry, J.F.; Rowlands, D.D.; Head, J.W., III; Duxbury, T.H.; et al. Initial observations from the lunar orbiter laser altimeter (LOLA). Geophys. Res. Lett. 2010, 37, L18204. [Google Scholar] [CrossRef]
- Wu, B.; Liu, W.C.; Grumpe, A.; Wöhler, C. Shape and Albedo from Shading (SAFS) for pixel-level DEM generation from monocular images constrained by low-resolution DEM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 521–527. [Google Scholar] [CrossRef]
- Liu, W.C.; Wu, B.; Wöhler, C. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction. ISPRS J. Photogramm. Remote Sens. 2018, 136, 58–72. [Google Scholar]
- Horn, B.K.P. Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1970. [Google Scholar]
- Ju, Y.K.; Zhou, J.C.; Zhou, S.T.; Xie, H.; Zhang, C.; Xiao, J.; Yang, C.X.; Sun, J. Three-dimentional reconstruction of underwater side-scan sonar images based on shape-from-shading and monocular depth fusion. Intell. Mar. Technol. Syst. 2024, 2, 4. [Google Scholar] [CrossRef]
- Santo, H.; Samejima, M.; Matsushita, Y. Numerical shape-from-shading revisited. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 8. [Google Scholar] [CrossRef]
- Grumpe, A.; Belkhir, F.; Wöhler, C. Construction of lunar DEMs based on reflectance modelling. Adv. Space Res. 2014, 53, 1735–1767. [Google Scholar] [CrossRef]
- Buyukdemircioglu, M.; Kocaman, S.; Kada, M. Deep Learning for 3D Building Reconstruction: A Review. In Proceedings of the 24th ISPRS Congress on Imaging Today, Foreseeing Tomorrow, Nice, France, 6–11 June 2022. [Google Scholar]
- Masoumian, A.; Rashwan, H.A.; Cristiano, J.; Asif, M.S.; Puig, D. Monocular Depth Estimation Using Deep Learning: A Review. Sensors 2022, 22, 5353. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.R.; Huang, R.; Ye, Z.; Xu, Y.S.; Tong, X.H. Generative 3D Reconstruction of Martian Surfaces using Monocular Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 51–56. [Google Scholar] [CrossRef]
- Ge, L. Research on 3D Reconstruction Methods Based on Deep Learning. Trans. Comput. Sci. Intell. Syst. Res. 2024, 5, 678–684. [Google Scholar] [CrossRef]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Chen, Z.; Wu, B.; Liu, W.C. Mars3DNet: CNN-Based High-Resolution 3D Reconstruction of the Martian Surface from Single Images. Remote Sens. 2021, 13, 839. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.Y.; Gläser, P.; Xiao, H.F.; Ye, Z.; Zhang, H.Y. CNN-Based Large Area Pixel-Resolution Topography Retrieval From Single-View LROC NAC Images Constrained With SLDEM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9398–9416. [Google Scholar] [CrossRef]
- Tao, Y.; Xiong, S.T.; Conway, S.J.; Muller, J.P.; Guimpier, A.; Fawdon, P.; Thomas, N.; Cremonese, G. Rapid Single Image-Based DTM Estimation from ExoMars TGO CaSSIS Images Using Generative Adversarial U-Nets. Remote Sens. 2021, 13, 2877. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.; Xiong, S.; Conway, S. MADNet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning. Remote Sens. 2021, 13, 4220. [Google Scholar] [CrossRef]
- Grassa, R.L.; Gallo, I.; Re, C.; Cremonese, G.; Landro, N.; Pernechele, C.; Simioni, E.; Gatti, M. An Adversarial Generative Network Designed for High-Resolution Monocular Depth Estimation from 2D HiRISE Images of Mars. Remote Sens. 2022, 14, 4619. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.X.; Di, K.C.; Peng, M.; Wan, W.H.; Liu, Z.Q. A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from High-Resolution Monocular Imagery and Low-Resolution DEM. Remote Sens. 2022, 14, 5420. [Google Scholar] [CrossRef]
- Alexandrov, O.; Beyer, R.A. Multiview Shape-From-Shading for Planetary Images. Earth Space Sci. 2018, 5, 652–666. [Google Scholar] [CrossRef]
- Bodensteiner, C.; Huebner, W.; Juengling, K.; Mueller, J.; Arens, M. Local multi-modal image matching based on self-similarity. In Proceedings of the IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010. [Google Scholar]
- Chang, K.; Ding, P.; Li, B.X. Single image super-resolution using collaborative representation and non-local self-similarity. Signal Process. 2018, 149, 49–61. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Z.Q.; Liang, J.; Zhang, L. SSL: A Self-similarity Loss for Improving Generative Image Super-resolution. In Proceedings of the 32nd ACM International Conference on Multimedia (MM ’24), New York, NY, USA, 28 October–1 November 2024. [Google Scholar]
- Iqbal, W.; Hiesinger, H.; van der Bogert, C. Geological mapping and chronology of lunar landing sites: Apollo 11. Icarus 2019, 333, 528–547. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.S. Photometric functions for photoclinometry and other applications. Icarus 1991, 92, 298–311. [Google Scholar] [CrossRef]
- Kereszturi, A. Polar Ice on the Moon. In Encyclopedia of Lunar Science; Cudnik, B., Ed.; Springer: Cham, Switzerland, 2023; pp. 971–980. [Google Scholar]
- Long, X.X.; Wang, C.; Sanlang, S.J.; Feng, Y.J.; Xu, X.; Xie, H.; Tong, X.H. Retrieving water ice abundance in representative regions of the Moon’s South Pole using topography corrected SELENE MI images. Geosci. Lett. 2025, 12, 33. [Google Scholar] [CrossRef]
ID | Area | LROC NAC Image ID |
---|---|---|
1 | Apollo 12 | M120005333LE, M120005333RE |
2 | Apollo 13 | M160139273LE, M160139273RE |
3 | Apollo 14 | M150633128LE, M150633128RE |
4 | Apollo 16 | M159847331LE, M159847331RE |
5 | Apollo 17 | M144708115LE, M144708115RE |
6 | LUNA 16 | M159582808LE, M159582808RE |
7 | LUNA 24 | M144219225LE, M144219225RE |
8 | RANGER 6 | M144483945LE, M144483945RE |
9 | RANGER 9 | M12930938LE, M12930938RE |
10 | RIMASHARP 3 | M173252954LE, M173252954RE |
Method | Reconstruction Error <2 m (%) | Reconstruction Error <4 m (%) | Reconstruction Error <10 m (%) | MAE (m) | RMSE (m) | SSIM | Rebuild Speed (h) |
---|---|---|---|---|---|---|---|
LDEMGAN2.0 | 56.16 | 87.25 | 95.10 | 1.49 | 2.01 | 0.86 | ~0.05 |
LDEMGAN1.0 | 48.32 | 73.06 | 91.54 | 2.76 | 3.02 | 0.77 | ~0.05 |
ASP SFS | 42.17 | 66.24 | 88.02 | 2.11 | 3.71 | 0.73 | ~12.5 |
Sub-Region | Elevation Change (m) | MAE (m) | RMSE (m) | SSIM | Maximum Error (m) |
---|---|---|---|---|---|
I | 42.76 | 1.92 | 2.78 | 0.79 | 7.01 |
II | 76.00 | 1.84 | 2.23 | 0.85 | 4.72 |
III | 69.10 | 1.25 | 2.06 | 0.84 | 5.24 |
IV | 62.01 | 1.77 | 2.74 | 0.77 | 7.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wang, Y.; Nan, J.; Zhao, C.; Wang, B.; Xie, B.; Liu, W.-C.; Di, K.; Liu, B.; Chen, S. A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint. Remote Sens. 2025, 17, 3097. https://doi.org/10.3390/rs17173097
Chen T, Wang Y, Nan J, Zhao C, Wang B, Xie B, Liu W-C, Di K, Liu B, Chen S. A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint. Remote Sensing. 2025; 17(17):3097. https://doi.org/10.3390/rs17173097
Chicago/Turabian StyleChen, Tianhao, Yexin Wang, Jing Nan, Chenxu Zhao, Biao Wang, Bin Xie, Wai-Chung Liu, Kaichang Di, Bin Liu, and Shaohua Chen. 2025. "A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint" Remote Sensing 17, no. 17: 3097. https://doi.org/10.3390/rs17173097
APA StyleChen, T., Wang, Y., Nan, J., Zhao, C., Wang, B., Xie, B., Liu, W.-C., Di, K., Liu, B., & Chen, S. (2025). A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint. Remote Sensing, 17(17), 3097. https://doi.org/10.3390/rs17173097