Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced Convergence and Robustness in GNSS Precise Point Positioning (PPP)
Abstract
1. Introduction
2. Materials and Methods
2.1. ASM for the Kalman Filter
2.1.1. LS-VCE
2.1.2. LS-VCE for the Kalman Filter
2.1.3. Implementation of ASM
2.2. Data Processing Model of GNSS PPP
3. Results
3.1. ASM Reflecting the Observational Conditions
3.1.1. Observational Noises of Pseudo-Range and Carrier-Phase Observations
3.1.2. Process Noises of Atmospheric Parameters
3.1.3. Process Noises of ISBs
3.2. Standard PPP Tests
3.2.1. PPP Results for Global Stations
3.2.2. PPP Results for Unsuitable Stochastic Model
3.3. PPP-AR Test
3.3.1. Ambiguity Resolution
3.3.2. PPP-AR Results for Global Stations
3.3.3. PPP-AR Results for Unsuitable Stochastic Model
3.4. Tests on Cycle-Slip Detection
3.4.1. DIA Algorithm
3.4.2. PPP Cycle-Slip Detection with DIA
3.4.3. Results for the Cycle-Slip Detection
3.5. Tests on Reconvergence and Interruption Repair
3.5.1. Reconvergences After 3 Min Interruptions
3.5.2. Interruption Repair for 3 Min Interruptions
4. Discussion
- Variance Factor Estimation: Variance factors for the observational noise of pseudo-range and carrier-phase measurements are estimable and capture time-varying observational conditions. The variance factor for the ionospheric delay process noise is estimable and reflects the temporal variation of the ionosphere. The variance factor for tropospheric delay is not estimable due to its minimal variation between epochs, which is overwhelmed by the noise.
- PPP Float and Fixed Solutions: The ASM offers no significant advantage when the predefined stochastic model is appropriate. However, when observational noise is large, rendering the predefined model unsuitable, the ASM adjusts the variance factors to deliver superior PPP float and fixed solutions.
- Cycle-Slip Detection with DIA: With the predefined stochastic model, 19% of simulated cycle slips remain undetected, resulting in degraded positioning precision at the meter level. With the ASM, the undetected cycle slips are reduced to 8%, and positioning precision improves. Notably, the 50th percentile error is reduced by 75%.
- Reconvergence and Interruption Repair: Simulated 3 min data interruptions every 2 h reveal that the ASM reduces the reconvergence time for 60% of data segments to a threshold of 0.1/0.1/0.2 m from 19 min (predefined stochastic model) to 15.5 min. This improvement is attributed to the enhanced variance factor for ionospheric delay process noise. Interruption repair tests show that reconvergence time for 80% of segments to the same threshold decreases from 30 min (predefined stochastic model) to 13.5 min (ASM), underscoring the benefits of the improved ionospheric stochastic model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Jin, S.; Wang, J.; Park, P.-H. An Improvement of GPS Height Estimations: Stochastic Modeling. Earth Planets Space 2005, 57, 253–259. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Gao, Y. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks. Sensors 2015, 15, 29893–29909. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lou, L.; Shen, Y. GNSS Elevation-Dependent Stochastic Modeling and Its Impacts on the Statistic Testing. J. Surv. Eng. 2016, 142, 04015012. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Verhagen, S. Impacts of BeiDou Stochastic Model on Reliability: Overall Test, w-Test and Minimal Detectable Bias. GPS Solut. 2017, 21, 1095–1112. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Li, H.; Rizos, C.; Shen, Y. The Influence of Improper Stochastic Modeling of Beidou Pseudoranges on System Reliability. Adv. Space Res. 2017, 60, 2680–2690. [Google Scholar] [CrossRef]
- Zaminpardaz, S.; Teunissen, P.J.G. DIA-Datasnooping and Identifiability. J. Geod. 2019, 93, 85–101. [Google Scholar] [CrossRef]
- Kim, D.; Langley, R.B. GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues. In Proceedings of the 7th GNSS Workshop–International Symposium on GPS/GNSS, Seoul, Korea, 30 November–2 December 2000. [Google Scholar]
- Amiri-Simkooei, A.R.; Jazaeri, S.; Zangeneh-Nejad, F.; Asgari, J. Role of Stochastic Model on GPS Integer Ambiguity Resolution Success Rate. GPS Solut. 2016, 20, 51–61. [Google Scholar] [CrossRef]
- Han, S. Quality-Control Issues Relating to Instantaneous Ambiguity Resolution for Real-Time GPS Kinematic Positioning. J. Geod. 1997, 71, 351–361. [Google Scholar] [CrossRef]
- Mehra, R. Approaches to Adaptive Filtering. IEEE Trans. Automat. Contr. 1972, 17, 693–698. [Google Scholar] [CrossRef]
- Chin, L. Advances in Adaptive Filtering. In Control and Dynamic Systems, Advanced in Theory and Applications; Leondes, C.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1979; Volume 15, pp. 277–356. [Google Scholar]
- Zhu, Z.; Liu, S. An Improved Sage-Husa Adaptive Filtering Algorithm. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 5113–5117. [Google Scholar]
- Xu, T.; Xu, X.; Xu, D.; Zou, Z.; Zhao, H. A New Robust Filtering Method of GNSS/MINS Integrated System for Land Vehicle Navigation. IEEE Trans. Veh. Technol. 2022, 71, 11443–11453. [Google Scholar] [CrossRef]
- Elzoghby, M.; Arif, U.; Li, F.; Zhi Yu, X. Investigation of Adaptive Robust Kalman Filtering Algorithms for GPS/DR Navigation System Filters. IOP Conf. Ser. Mater. Sci. Eng. 2017, 187, 012019. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, H.; Wang, J.; He, Z.; Wang, D. SINS/CNS/GNSS Integrated Navigation Based on an Improved Federated Sage–Husa Adaptive Filter. Sensors 2019, 19, 3812. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, Y.; Li, B. Stochastic Model of GPS Doppler: Evaluation, Modeling and Performance. In China Satellite Navigation Conference (CSNC) 2012 Proceedings; Sun, J., Liu, J., Yang, Y., Fan, S., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 159, pp. 395–406. ISBN 978-3-642-29186-9. [Google Scholar]
- Li, B.; Hao, Q. Towards Reliable and Precise BeiDou Positioning with Stochastic Modelling. In International Symposium on Earth and Environmental Sciences for Future Generations; Freymueller, J.T., Sánchez, L., Eds.; International Association of Geodesy Symposia; Springer International Publishing: Cham, Switzerland, 2016; Volume 147, pp. 229–235. ISBN 978-3-319-69169-5. [Google Scholar]
- Li, B. Stochastic Modeling of Triple-Frequency BeiDou Signals: Estimation, Assessment and Impact Analysis. J. Geod. 2016, 90, 593–610. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, F.; Jin, S. Improved Stochastic Modeling of Multi-GNSS Single Point Positioning with Additional BDS-3 Observations. Meas. Sci. Technol. 2021, 32, 045105. [Google Scholar] [CrossRef]
- Wang, J.-G.; Gopaul, N.; Scherzinger, B. Simplified Algorithms of Variance Component Estimation for Static and Kinematic GPS Single Point Positioning. J. Glob. Position. Syst. 2009, 8, 43–52. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X. Online Algorithm for Variance Components Estimation. Commun. Nonlinear Sci. Numer. Simul. 2021, 97, 105722. [Google Scholar] [CrossRef]
- Hou, P.; Zha, J.; Liu, T.; Zhang, B. LS-VCE Applied to Stochastic Modeling of GNSS Observation Noise and Process Noise. Remote Sens. 2022, 14, 258. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Zhou, J. A Novel Weighting Approach for Variance Component Estimation in GPS/BDS PPP. IEEE Sens. J. 2019, 19, 3763–3771. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L. Adaptive Stochastic Model Based on LS-VCE for Observations in Kinematic Precise Point Positioning. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3410–3414. [Google Scholar]
- Yang, X.; Chang, G.; Wang, Q.; Zhang, S.; Mao, Y.; Chen, X. An Adaptive Kalman Filter Based on Variance Component Estimation for a Real-Time ZTD Solution. Acta Geod. Geophys. 2019, 54, 89–121. [Google Scholar] [CrossRef]
- Chang, G.; Xu, T.; Yao, Y.; Wang, Q. Adaptive Kalman Filter Based on Variance Component Estimation for the Prediction of Ionospheric Delay in Aiding the Cycle Slip Repair of GNSS Triple-Frequency Signals. J. Geod. 2018, 92, 1241–1253. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Least-Squares Estimation of the Integer GPS Ambiguities. In Invited Lecture. Section IV Theory and Methodology, IAG General Meeting, Beijing, China; Delft Geodetic Computing Centre: Delft, The Netherlands, 1993. [Google Scholar]
- Psychas, D.; Verhagen, S.; Teunissen, P.J.G. Precision Analysis of Partial Ambiguity Resolution-Enabled PPP Using Multi-GNSS and Multi-Frequency Signals. Adv. Space Res. 2020, 66, 2075–2093. [Google Scholar] [CrossRef]
- De Jonge, P.; Tiberius, C.C.J.M. The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects; Publications of the Delft Computing Centre, LGR-Series; Delft Computing Centre: Delft, The Netherlands, 1996; Volume 12, pp. 1–47. [Google Scholar]
- Verhagen, S.; Li, B.; Teunissen, P.J.G. Ps-LAMBDA: Ambiguity Success Rate Evaluation Software for Interferometric Applications. Comput. Geosci. 2013, 54, 361–376. [Google Scholar] [CrossRef]
- Baarda, W. A Testing Procedure for Use in Geodetic Networks; Netherlands Geodetic Commission: Amersfoort, The Netherlands, 1968; Volume 2. [Google Scholar]
- Chen, D. A Method for the Repair of Cycle Slip Using Double-Differenced Velocity Estimation for GNSS RTK Positioning. Adv. Space Res. 2019, 63, 2809–2821. [Google Scholar] [CrossRef]
- Momoh, J.A. Robust GNSS Point Positioning in the Presence of Cycle Slips and Observation Gaps. Ph.D. Thesis, University College London, London, UK, 2013. [Google Scholar]
- Li, B.; Qin, Y.; Liu, T. Geometry-Based Cycle Slip and Data Gap Repair for Multi-GNSS and Multi-Frequency Observations. J. Geod. 2019, 93, 399–417. [Google Scholar] [CrossRef]
- Rao, C.R. Estimation of Variance and Covariance Components-MINQUE Theory. J. Multivar. Anal. 1971, 1, 257–275. [Google Scholar] [CrossRef]
- Koch, K. Schätzung von Varianzkomponenten. Allg. Vermess. Nachrich. 1978, 85, 264–269. [Google Scholar]
- Teunissen, P.J.G.; Amiri-Simkooei, A.R. Least-Squares Variance Component Estimation. J. Geod. 2008, 82, 65–82. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, P.; Liu, T.; Yuan, Y. A Single-Receiver Geometry-Free Approach to Stochastic Modeling of Multi-Frequency GNSS Observables. J. Geod. 2020, 94, 37. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Zero Order Design: Generalized Inverses, Adjustment, the Datum Problem and S-Transformations. In Optimization and Design of Geodetic Networks; Grafarend, E.W., Sansò, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–55. ISBN 978-3-642-70661-5. [Google Scholar]
- Schaer, S.; Villiger, A.; Arnold, D.; Dach, R.; Prange, L.; Jäggi, A. The CODE Ambiguity-Fixed Clock and Phase Bias Analysis Products: Generation, Properties, and Performance. J. Geod. 2021, 95, 81. [Google Scholar] [CrossRef]
- Su, K.; Jiao, G. Estimation of BDS Pseudorange Biases with High Temporal Resolution: Feasibility, Affecting Factors, and Necessity. Satell. Navig. 2023, 4, 17. [Google Scholar] [CrossRef]
- de Lacy, M.C.; Reguzzoni, M.; Sansò, F.; Venuti, G. The Bayesian Detection of Discontinuities in a Polynomial Regression and Its Application to the Cycle-Slip Problem. J. Geod. 2008, 82, 527–542. [Google Scholar] [CrossRef]
- Cai, C.; Liu, Z.; Xia, P.; Dai, W. Cycle Slip Detection and Repair for Undifferenced GPS Observations under High Ionospheric Activity. GPS Solut. 2013, 17, 247–260. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. GNSS Ambiguity Bootstrapping: Theory and Application. In Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, AB, Canada, 5–8 June 2001; pp. 246–254. [Google Scholar]
- Teunissen, P.J.G. An Optimality Property of the Integer Least-Squares Estimator. J. Geod. 1999, 73, 587–593. [Google Scholar] [CrossRef]
- Odijk, D.; Arora, B.S.; Teunissen, P.J.G. Predicting the Success Rate of Long-Baseline GPS+Galileo (Partial) Ambiguity Resolution. J. Navig. 2014, 67, 385–401. [Google Scholar] [CrossRef]
- Nardo, A.; Li, B.; Teunissen, P.J.G. Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo Scenario: A Simulation Study. Adv. Space Res. 2016, 57, 30–45. [Google Scholar] [CrossRef]
- Dai, Z.; Knedlik, S.; Loffeld, O. Instantaneous Triple-Frequency GPS Cycle-Slip Detection and Repair. Int. J. Navig. Obs. 2009, 2009, 407231. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J. A Real-Time Cycle Slip Repair Method Using the Multi-Epoch Geometry-Based Model. GPS Solut. 2021, 25, 60. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, J.; Li, B.; He, X. Principles, Methods and Applications of Cycle Slip Detection and Repair under Complex Observation Conditions. J. Geod. 2023, 97, 50. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. Instantaneous Re-Initialization in Real-Time Kinematic PPP with Cycle Slip Fixing. GPS Solut. 2012, 16, 315–327. [Google Scholar] [CrossRef]
- Yao, Y.-F.; Gao, J.-X.; Wang, J.; Hu, H.; Li, Z.-K. Real-Time Cycle-Slip Detection and Repair for BeiDou Triple-Frequency Undifferenced Observations. Surv. Rev. 2016, 48, 367–375. [Google Scholar] [CrossRef]
Items | Values | |
---|---|---|
Data input | Observations | GPS: L1/L2; BDS: B1I/B3I; Galileo: E1/E5a |
Sampling rate | 30 s | |
Satellite orbit and clock | CODE final MGEX product | |
Parameter estimation | Estimator | Kalman filter |
PPP models | Uncombined PPP | |
Measurement noise | Pseudo range | 0.2 m |
Carrier phase | 2 mm | |
Dynamic model | Position | White noise |
Tropospheric wet delay | Random walk | |
Receiver clock error | White noise | |
Code bias | Random walk | |
Phase bias | Random walk | |
Ambiguity | Random constant | |
Ionospheric delay | Random walk |
Processing Scheme | RMS on Three Directions (m) | ||
---|---|---|---|
East | North | Up | |
Original | 0.116 | 0.061 | 0.136 |
Adaptive | 0.050 | 0.030 | 0.102 |
Processing Scheme | RMS on Three Directions (m) | ||
---|---|---|---|
East | North | Up | |
Original | 0.211 | 0.109 | 0.380 |
Adaptive | 0.134 | 0.078 | 0.244 |
Original | Adaptive | |
---|---|---|
Simulated | 30,528 | 30,528 |
Detected | 24,711 | 28,047 |
Detection rate | 81% | 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Sun, Y.; Zhou, Y.; Wang, S.; Liu, Y. Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced Convergence and Robustness in GNSS Precise Point Positioning (PPP). Remote Sens. 2025, 17, 3071. https://doi.org/10.3390/rs17173071
Zheng Y, Sun Y, Zhou Y, Wang S, Liu Y. Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced Convergence and Robustness in GNSS Precise Point Positioning (PPP). Remote Sensing. 2025; 17(17):3071. https://doi.org/10.3390/rs17173071
Chicago/Turabian StyleZheng, Yanning, Yongfu Sun, Yubin Zhou, Shengli Wang, and Yixu Liu. 2025. "Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced Convergence and Robustness in GNSS Precise Point Positioning (PPP)" Remote Sensing 17, no. 17: 3071. https://doi.org/10.3390/rs17173071
APA StyleZheng, Y., Sun, Y., Zhou, Y., Wang, S., & Liu, Y. (2025). Variance Component Estimation (VCE)-Based Adaptive Stochastic Modeling for Enhanced Convergence and Robustness in GNSS Precise Point Positioning (PPP). Remote Sensing, 17(17), 3071. https://doi.org/10.3390/rs17173071