Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms
Abstract
Highlights
- Synchronized NO2 and SO2 vertical profiles contribute to the estimation of PM2.5 vertical distribution.
- The proposed model can be used to estimate PM2.5 concentration in typical regions in China.
- PM2.5 mass concentration is not significantly impacted by RH in the two northern cities of Beijing and Lanzhou.
- PM2.5 vertical profile estimation reveals high altitude air pollution transport event in Beijing.
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. MAX-DOAS Observations
2.1.2. PM2.5 In Situ Monitoring
2.1.3. Meteorological Data
2.1.4. Data Preprocessing
2.2. Methodology
2.2.1. XGBoost Model
2.2.2. RF Model
2.2.3. BPNN Model
2.2.4. Model Optimization
2.2.5. Model Evaluation
2.2.6. Feature Importance
2.2.7. Vertical Transport Flux
3. Results and Discussion
3.1. Model Comparison
3.2. Near-Surface PM2.5 Concentration Validation
3.3. PM2.5 Vertical Profile Validation
3.4. Vertical Distribution of PM2.5
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Dong, L.; Huang, J.; Wang, Y.; Jing, Z.; Yan, W.; Wang, X.; Song, Z.; Huang, Z.; Guan, X.; et al. Analysis of Long-Term Trends in the Vertical Distribution and Transport Paths of Atmospheric Aerosols in Typical Regions of China Using 15 Years of CALIOP Data. J. Geophys. Res. Atmos. 2023, 128, e2022JD038066. [Google Scholar] [CrossRef]
- Yang, T.; Li, H.; Xu, W.; Song, Y.; Xu, L.; Wang, H.; Wang, F.; Sun, Y.; Wang, Z.; Fu, P. Strong impacts of regional atmospheric transport on the vertical distribution of aerosol ammonium over Beijing. Environ. Sci. Technol. Lett. 2023, 11, 29–34. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.; Song, X.; Duan, X.; Peng, X.; Lin, W.; Zhao, G.; Zhang, G.; Xu, X.; Jin, J. Cross-Regional Horizontal and Vertical Transport Pathways of Carbon Monoxide and Its Impact on Air Pollution in the Tibetan Plateau. J. Geophys. Res. Atmos. 2025, 130, e2024JD041859. [Google Scholar] [CrossRef]
- Li, X.-B.; Wang, D.-S.; Lu, Q.-C.; Peng, Z.-R.; Wang, Z.-Y. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements. Atmos. Environ. 2018, 173, 62–71. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Fu, P.; Jiang, Q.; Yang, T.; Li, J.; Ge, X. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.; Fu, Q.; Yan, L.; Morawska, L.; Jayaratne, R.; Xiu, G. Sources and vertical distribution of PM2.5 over Shanghai during the winter of 2017. Sci. Total Environ. 2020, 706, 135683. [Google Scholar] [CrossRef]
- Lung, S.C.C.; Wang, W.C.V.; Wen, T.Y.J.; Liu, C.H.; Hu, S.C. A versatile low-cost sensing device for assessing PM2.5 spatiotemporal variation and quantifying source contribution. Sci. Total Environ. 2020, 716, 137145. [Google Scholar] [CrossRef]
- Kim, B.Y.; Cha, J.W.; Lee, Y.H. Estimation of PM10 and PM2.5 using backscatter coefficient of ceilometer and machine learning. Aerosol. Air Qual. Res. 2023, 23, 230033. [Google Scholar] [CrossRef]
- Mehadi, A.; Moosmuller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef]
- Cambra-Lopez, M.; Winkel, A.; Mosquera, J.; Ogink, N.W.; Aarnink, A.J. Comparison between light scattering and gravimetric devices for sampling PM10 mass concentration in livestock houses. In 2012 IX International Livestock Environment Symposium (ILES IX); American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2012; p. 3. [Google Scholar] [CrossRef]
- Sun, Y.; Song, T.; Tang, G.; Wang, Y. The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ. 2013, 74, 413–421. [Google Scholar] [CrossRef]
- Ran, L.; Deng, Z.; Wu, Y.; Li, J.; Bai, Z.; Lu, Y.; Zhuoga, D.; Bian, J. Measurement report: Vertical profiling of particle size distributions over Lhasa, Tibet: Tethered balloon-based in-situ measurements and source apportionment. Atmos. Chem. Phys. Discuss. 2021, 22, 6217–6229. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, H.J.; Jo, H.Y.; Jo, Y.J.; Kim, C.H. Vertical characteristics of secondary aerosols observed in the Seoul and Busan Metropolitan Areas of Korea during KORUS-AQ and associations with meteorological conditions. Atmosphere 2021, 12, 1451. [Google Scholar] [CrossRef]
- Hwang, H.; Lee, J.E.; Shin, S.A.; You, C.R.; Shin, S.H.; Park, J.-S.; Lee, J.Y. Vertical profiles of PM2.5 and O3 measured using an unmanned aerial vehicle (UAV) and their relationships with synoptic-and local-scale air movements. Remote Sens. 2024, 16, 1581. [Google Scholar] [CrossRef]
- Wenjuan, Z.; Bo, L.; Fengjuan, S. Research on inversion method of PM2.5 mass concentration by aerosol extinction coefficient. Infrared Laser Eng. 2020, 49, 20200367. [Google Scholar] [CrossRef]
- Zongming, T.; Huihui, S.; Xiaomin, M. Retrieval method of PM2.5 mass concentration profile in near-ground and case study. Laser Optoelectron. Prog. 2015, 52, 110102. [Google Scholar] [CrossRef]
- Hung, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Reid, J.S.; Kuehn, R.E.; Holz, R.E.; Eloranta, E.W.; Kaku, K.C.; Kuang, S.; Newchurch, M.J.; Thompson, A.M.; Trepte, C.R.; Zhang, J.; et al. Ground-based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States. J. Geophys. Res. Atmos. 2017, 122, 2970–3004. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Tan, W.; Liu, H.; Xing, C.; Ji, X.; Tanvir, A.; Hong, Q.; Sandhu, O. Ground-based MAX-DOAS observations of CHOCHO and HCHO in Beijing and Baoding, China. Remote Sens. 2019, 11, 1524. [Google Scholar] [CrossRef]
- Liu, C.; Xing, C.; Hu, Q.; Li, Q.; Liu, H.; Hong, Q.; Tan, W.; Ji, X.; Lin, H.; Lu, C.; et al. Ground-based hyperspectral stereoscopic remote sensing network: A promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering 2021, 19, 71–83. [Google Scholar] [CrossRef]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; Van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef]
- Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M.M.; et al. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements. Atmos. Meas. Tech. 2016, 9, 3205–3222. [Google Scholar] [CrossRef]
- Tan, W.; Liu, C.; Wang, S.; Liu, H.; Zhu, Y.; Su, W.; Hu, Q.; Liu, J. Long-distance mobile MAX-DOAS observations of NO2 and SO2 over the North China Plain and identification of regional transport and power plant emissions. Atmos. Res. 2020, 245, 105037. [Google Scholar] [CrossRef]
- Tan, W.; Liu, C.; Wang, S.; Xing, C.; Su, W.; Zhang, C.; Xia, C.; Liu, H.; Cai, Z.; Liu, J. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmos. Chem. Phys. 2018, 18, 15387–15402. [Google Scholar] [CrossRef]
- Ou, J.; Hu, Q.; Liu, H.; Hong, Q.; Xing, C.; Tan, W.; Lin, H.; Wang, X.; Xu, H.; Zhu, P.; et al. Vertical characterization and potential sources of aerosols in different seasons over the Yangtze River Delta using ground-based MAX-DOAS. Environ. Pollut. 2021, 279, 116898. [Google Scholar] [CrossRef]
- Wang, Y.; Beirle, S.; Lampel, J.; Koukouli, M.; De Smedt, I.; Theys, N.; Li, A.; Wu, D.; Xie, P.; Liu, C.; et al. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: Investigation of the effects of priori profiles and aerosols on the satellite products. Atmos. Chem. Phys. 2017, 17, 5007–5033. [Google Scholar] [CrossRef]
- Chen, X.; de Leeuw, G.; Arola, A.; Liu, S.; Liu, Y.; Li, Z.; Zhang, K. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method. Remote Sens. Environ. 2020, 249, 112006. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H.; Zheng, F. Aerosol optical depth retrieval over East Asia using Himawari-8/AHI data. Remote Sens. 2018, 10, 137. [Google Scholar] [CrossRef]
- Che, H.; Qi, B.; Zhao, H.; Xia, X.; Eck, T.F.; Goloub, P.; Dubovik, O.; Estelles, V.; Cuevas-Agulló, E.; Blarel, L.; et al. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys. 2018, 18, 405–425. [Google Scholar] [CrossRef]
- Marshak, A.; Ackerman, A.; da Silva, A.M.; Eck, T.; Holben, B.; Kahn, R.; Kleidman, R.; Knobelspiesse, K.; Levy, R.; Lyapustin, A.; et al. Aerosol Properties in Cloudy Environments from Remote Sensing Observations: A Review of the Current State of Knowledge. Bull. Am. Meteorol. Soc. 2021, 102, E2177–E2197. [Google Scholar] [CrossRef]
- Li, X.; Xie, P.; Xu, J.; Li, A.; Tian, X.; Ren, B.; Hu, Z.; Wu, Z. Aerosol Observation and Research in Hefei by MAX-DOAS Technology. Spectrosc. Spectr. Anal. 2020, 40, 712–719. [Google Scholar] [CrossRef]
- Shao, H.; Li, H.; Jin, S.; Fan, R.; Wang, W.; Liu, B.; Ma, Y.; Wei, R.; Gong, W. Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations. Remote Sens. 2023, 15, 2742. [Google Scholar] [CrossRef]
- Chai, J.; Song, J.; Xu, Y.; Zhang, L.; Guo, B. Enhancing the applicability of satellite remote sensing for PM2.5 estimation using machine learning models in China. J. Sens. 2022, 2022, 7148682. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Zhu, R.; Wilson, J.P.; Song, J.; Chen, R.; Liu, L.; Bao, L. An Intelligent Learning Reconfiguration Model Based on Optimized Transformer and Multi-Source Features (TMSF) for High-Precision InSAR DEM Void Filling. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5203418. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Li, J.; Cheng, J.; Shi, J.; Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In Advances in Computer Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 553–558. [Google Scholar] [CrossRef]
- Chen, B.; Song, Z.; Pan, F.; Huang, Y. Obtaining vertical distribution of PM2.5 from CALIOP data and machine learning algorithms. Sci. Total Environ. 2022, 805, 150338. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, Y.; Liu, B.; Xu, X.; Jin, S.; Gong, W. Retrieving the Vertical Distribution of PM2.5 Mass Concentration from Lidar via a Random Forest Model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5701209. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Hu, Q.; Xing, C.; Tan, W.; Liu, H.; Huang, Y.; Zhu, Y.; Zhang, J.; Geng, T. Evolution of the vertical structure of air pollutants during winter heavy pollution episodes: The role of regional transport and potential sources. Atmos. Res. 2019, 228, 206–222. [Google Scholar] [CrossRef]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Xing, C.; Hu, Q.; Hong, Q.; Liu, H.; Li, Q.; Tan, W.; Ji, X.; Wang, Z. Validation of water vapor vertical distributions retrieved from max-doas over Beijing, China. Remote Sens. 2020, 12, 3193. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Wang, S.; Chan, K.L.; Gao, Y.; Huang, X.; Su, W.; Zhang, C.; Dong, Y.; Fan, G. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmos. Chem. Phys. 2017, 17, 14275–14289. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Wang, S.; Hu, Q.; Liu, H.; Tan, W.; Zhang, W.; Li, B.; Liu, J. A new method to determine the aerosol optical properties from multiple-wavelength O4 absorptions by MAX-DOAS observation. Atmos. Meas. Tech. 2019, 12, 3289–3302. [Google Scholar] [CrossRef]
- Cheng, J.; Gui, T.; Qi, L.; Bao, L.; Meng, W.; Yue, W. Vertical Profile of Aerosol in Spring in Beijing Based on Multi-Axis Differential Optical Absorption Spectroscopy Detection. Spectrosc. Spectr. Anal. 2022, 42, 265–271. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Q.; Gao, M.; Zhao, C.; Zhang, C.; Liu, T.; Tian, Y.; Yan, L.; Su, W.; Hong, X.; et al. Quantifying contributions of local emissions and regional transport to NOX in Beijing using TROPOMI constrained WRF-Chem simulation. Remote Sens. 2021, 13, 1798. [Google Scholar] [CrossRef]
- Chen, Y. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network. Computing 2018, 100, 825–838. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- García, M.V.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.; Hu, J.; Hopke, P.K.; Zhang, Y.; Zhao, B.; Xing, J.; Li, L.; Mei, X. Evaluation of regional transport of PM2.5 during severe atmospheric pollution episodes in the western Yangtze River Delta, China. J. Environ. Manag. 2021, 293, 112827. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, Y.; Cheng, S.; Wang, X.; Guan, P. Characterization of multiple atmospheric pollutants during haze and non-haze episodes in Beijing, China: Concentration, chemical components and transport flux variations. Atmos. Environ. 2021, 246, 118129. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Göbel, T.; Hallbauer, E.; Nowak, A.; Ran, L.; Xu, W.; Deng, Z.; Ma, N.; Mildenberger, K. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos. Chem. Phys. 2011, 11, 3479–3494. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, X.; Bao, J.; Zhou, B.; Huang, J.; Shi, J.; Bi, J. A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys. 2010, 10, 4283–4293. [Google Scholar] [CrossRef]
Model | Parameters | Values |
---|---|---|
XGBoost | number of trees (n_estimators) | 100 |
maximum depth of tree (max_depth) | 9 | |
subsample | 0.7 | |
learning rate | 0.1 | |
alpha | 0.1 | |
lambda | 3 | |
RF | number of trees (n_estimators) | 90 |
maximum depth of tree (max_depth) | 10 | |
criterion | mse | |
BPNN | hidden layer sizes | 8 |
solver | adam | |
activation | relu | |
maximum iterations | 1000 | |
init learning rate | 0.06 |
XGBoost | RF | BPNN | ||||
---|---|---|---|---|---|---|
R | RMSE | R | RMSE | R | RMSE | |
Test set | 0.91 | 13.37 | 0.90 | 13.70 | 0.87 | 17.11 |
10-fold CV | 0.98 | 6.52 | 0.95 | 9.83 | 0.81 | 18.46 |
Spatial 4-fold CV | 0.61 | 20.71 | 0.64 | 21.05 | 0.64 | 21.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Luo, J.; Qin, H.; Xia, S.; Zhang, Z.; Xing, C.; Tan, W.; Liu, H.; Hu, Q. Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms. Remote Sens. 2025, 17, 3063. https://doi.org/10.3390/rs17173063
Li Q, Luo J, Qin H, Xia S, Zhang Z, Xing C, Tan W, Liu H, Hu Q. Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms. Remote Sensing. 2025; 17(17):3063. https://doi.org/10.3390/rs17173063
Chicago/Turabian StyleLi, Qihua, Jinyi Luo, Hanwen Qin, Shun Xia, Zhiguo Zhang, Chengzhi Xing, Wei Tan, Haoran Liu, and Qihou Hu. 2025. "Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms" Remote Sensing 17, no. 17: 3063. https://doi.org/10.3390/rs17173063
APA StyleLi, Q., Luo, J., Qin, H., Xia, S., Zhang, Z., Xing, C., Tan, W., Liu, H., & Hu, Q. (2025). Estimation of PM2.5 Vertical Profiles from MAX-DOAS Observations Based on Machine Learning Algorithms. Remote Sensing, 17(17), 3063. https://doi.org/10.3390/rs17173063