Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Buoy Observation
2.2. Satellite Observation
2.3. Numerical Model Simulation
3. Results
3.1. Moored Buoy and Satellite Observations of an Oceanic Front
3.2. Atmospheric Response to the Frontal Passage
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, M.J. Introduction and Historical Perspective. In Proceedings of the Oceanic Fronts in Coastal Processes; Bowman, M.J., Esaias, W.E., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 2–5. [Google Scholar]
- Woodson, C.B.; Litvin, S.Y. Ocean Fronts Drive Marine Fishery Production and Biogeochemical Cycling. Proc. Natl. Acad. Sci. USA 2015, 112, 1710–1715. [Google Scholar] [CrossRef]
- Greer, A.T.; Cowen, R.K.; Guigand, C.M.; Hare, J.A. Fine-Scale Planktonic Habitat Partitioning at a Shelf-Slope Front Revealed by a High-Resolution Imaging System. J. Mar. Syst. 2015, 142, 111–125. [Google Scholar] [CrossRef]
- Chu, P.C.; Wang, G. Seasonal Variability of Thermohaline Front in the Central South China Sea. J. Oceanogr. 2003, 59, 65–78. [Google Scholar] [CrossRef]
- Thomas, L.N.; Taylor, J.R.; Ferrari, R.; Joyce, T.M. Symmetric Instability in the Gulf Stream. Deep Sea Res. Part II 2013, 91, 96–110. [Google Scholar] [CrossRef]
- Qiu, C.; He, B.; Wang, D.; Zou, Z.; Tang, H. Mechanisms of a Shelf Submesoscale Front in the Northern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2023, 202, 104197. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Zhu, R.; Yang, H.; Li, M.; Chen, Z.; Ma, X.; Cai, J.; Wu, L. Observations Reveal Vertical Transport Induced by Submesoscale Front. Sci. Rep. 2024, 14, 4407. [Google Scholar] [CrossRef]
- Hayes, S.P.; McPhaden, M.J.; Wallace, J.M. The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Weekly to Monthly Variability. J. Clim. 1989, 2, 1500–1506. [Google Scholar] [CrossRef]
- Wallace, J.M.; Mitchell, T.P.; Deser, C. The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. J. Clim. 1989, 2, 1492–1499. [Google Scholar] [CrossRef]
- Kelly, K.A.; Dickinson, S.; McPhaden, M.J.; Johnson, G.C. Ocean Currents Evident in Satellite Wind Data. Geophys. Res. Lett. 2001, 28, 2469–2472. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Summertime Coupling between Sea Surface Temperature and Wind Stress in the California Current System. J. Phys. Oceanogr. 2007, 37, 495–517. [Google Scholar] [CrossRef]
- Small, R.J.; deSzoeke, S.P.; Xie, S.P.; O’Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–Sea Interaction over Ocean Fronts and Eddies. Dyn. Atmos. Ocean. 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Nigam, S. On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef]
- Xie, S.-P. Satellite Observations of Cool Ocean–Atmosphere Interaction. Bull. Am. Meteorol. Soc. 2004, 85, 195–208. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Kanenari, T.; Tokinaga, H.; Xie, S.-P. Sea Level Pressure Minimum along the Kuroshio and Its Extension. J. Clim. 2011, 24, 4419–4434. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The Effects of SST-Induced Surface Wind Speed and Direction Gradients on Midlatitude Surface Vorticity and Divergence. J. Clim. 2010, 23, 255–281. [Google Scholar] [CrossRef]
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Small, R.J. Influence of the Gulf Stream on the Troposphere. Nature 2008, 452, 206–209. [Google Scholar] [CrossRef]
- Young, G.S.; Sikora, T.D. Mesoscale Stratocumulus Bands Caused by Gulf Stream Meanders. Mon. Weather Rev. 2003, 131, 2177–2191. [Google Scholar] [CrossRef]
- Held, I.M.; Ting, M.; Wang, H. Northern Winter Stationary Waves: Theory and Modeling. J. Clim. 2002, 15, 2125–2144. [Google Scholar] [CrossRef]
- Smahrt, L.; Vickers, D.; Moore, E. Flow Adjustments Across Sea-Surface Temperature Changes. Bound. -Layer Meteorol. 2004, 111, 553–564. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Sun, S.; Li, M.; Cai, W.; Wu, L.; Cai, J.; Sun, B.; Ma, K.; Ma, X.; et al. Observations Reveal Intense Air-Sea Exchanges Over Submesoscale Ocean Front. Geophys. Res. Lett. 2024, 51, e2023GL106840. [Google Scholar] [CrossRef]
- Zhu, R.; Li, M.; Yang, H.; Ma, X.; Chen, Z. Oceanic Eddy with Submesoscale Edge Drives Intense Air-Sea Exchanges and Beyond. Sci. Rep. 2024, 14, 25183. [Google Scholar] [CrossRef]
- Qu, T.; Du, Y.; Gan, J.; Wang, D. Mean Seasonal Cycle of Isothermal Depth in the South China Sea. J. Geophys. Res. 2007, 112, C02020. [Google Scholar] [CrossRef]
- Liu, Q.; Kaneko, A.; Jilan, S. Recent Progress in Studies of the South China Sea Circulation. J. Oceanogr. 2008, 64, 753–762. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Q.; Zhao, W. Enhanced Diapycnal Mixing in the South China Sea. J. Phys. Oceanogr. 2009, 39, 3191–3203. [Google Scholar] [CrossRef]
- Ramp, S.R.; Yang, Y.J.; Bahr, F.L. Characterizing the Nonlinear Internal Wave Climate in the Northeastern South China Sea. Nonlinear Process. Geophys. 2010, 17, 481–498. [Google Scholar] [CrossRef]
- Chen, G.; Hou, Y.; Chu, X. Mesoscale Eddies in the South China Sea: Mean Properties, Spatiotemporal Variability, and Impact on Thermohaline Structure. J. Geophys. Res. 2011, 116, C06018. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-Dimensional Properties of Mesoscale Eddies in the South China Sea Based on Eddy-Resolving Model Output. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.; Chang, P.; Wu, D.; Wan, X. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea. Sci. Rep. 2016, 6, 24349. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.H. A Survey of Studies on the South China Sea Upper Ocean Circulation. Acta Oceanogr. Taiwanica 1998, 37, 1–16. [Google Scholar]
- Wang, G.; Li, J.; Wang, C.; Yan, Y. Interactions among the Winter Monsoon, Ocean Eddy and Ocean Thermal Front in the South China Sea. J. Geophys. Res. 2012, 117, C08002. [Google Scholar] [CrossRef]
- Liu, K.-K.; Chao, S.-Y.; Shaw, P.-T.; Gong, G.-C.; Chen, C.-C.; Tang, T.Y. Monsoon-Forced Chlorophyll Distribution and Primary Production in the South China Sea: Observations and a Numerical Study. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1387–1412. [Google Scholar] [CrossRef]
- Dong, J.; Zhong, Y. Submesoscale Fronts Observed by Satellites over the Northern South China Sea Shelf. Dyn. Atmos. Ocean. 2020, 91, 101161. [Google Scholar] [CrossRef]
- Wang, D. Air-Sea Interaction in the South China Sea. In Ocean Circulation and Air-Sea Interaction in the South China Sea; Wang, D., Ed.; Springer Nature Singapore: Singapore, 2022; pp. 307–394. ISBN 978-981-19-6262-2. [Google Scholar]
- Wang, D.; Zhuang, W.; Xie, S.-P.; Hu, J.; Shu, Y.; Wu, R. Coastal Upwelling in Summer 2000 in the Northeastern South China Sea. J. Geophys. Res. 2012, 117, C04009. [Google Scholar] [CrossRef]
- Hu, J.Y.; Kawamura, H.; Tang, D.L. Tidal Front around the Hainan Island, Northwest of the South China Sea. J. Geophys. Res. 2003, 108, 3342. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Qi, Y.; Shi, P. Seasonal Variability of Thermal Fronts in the Northern South China Sea from Satellite Data. Geophys. Res. Lett. 2001, 28, 3963–3966. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Du, Y.; Zhang, S.; Xie, L. Summer Upwelling and Thermal Fronts in the Northwestern South China Sea: Observational Analysis of Two Mesoscale Mapping Surveys. J. Geophys. Res. Ocean. 2015, 120, 1993–2006. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Fox-Kemper, B.; Du, Y.; Lian, S. Seasonal Thermal Fronts on the Northern South China Sea Shelf: Satellite Measurements and Three Repeated Field Surveys. J. Geophys. Res. Ocean. 2016, 121, 1914–1930. [Google Scholar] [CrossRef]
- Ren, S.; Zhu, X.; Drevillon, M.; Wang, H.; Zhang, Y.; Zu, Z.; Li, A. Detection of SST Fronts from a High-Resolution Model and Its Preliminary Results in the South China Sea. J. Atmos. Ocean. Technol. 2021, 38, 387–403. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Z. Seasonal Variability in Spatial Patterns of Sea Surface Cold- and Warm Fronts over the Continental Shelf of the Northern South China Sea. Front. Mar. Sci. 2023, 9, 1100772. [Google Scholar] [CrossRef]
- Shi, R.; Guo, X.; Wang, D.; Zeng, L.; Chen, J. Seasonal Variability in Coastal Fronts and Its Influence on Sea Surface Wind in the Northern South China Sea. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2015, 119, 30–39. [Google Scholar] [CrossRef]
- Shi, R.; Chen, J.; Guo, X.; Zeng, L.; Li, J.; Xie, Q.; Wang, X.; Wang, D. Ship Observations and Numerical Simulation of the Marine Atmospheric Boundary Layer over the Spring Oceanic Front in the Northwestern South China Sea. J. Geophys. Res. Atmos. 2017, 122, 3733–3753. [Google Scholar] [CrossRef]
- Hogg, N.G. On the Correction of Temperature and Velocity Time Series for Mooring Motion. J. Atmos. Ocean. Technol. 1986, 3, 204–214. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Zhang, Y.; Zhang, H.-R.; Chai, F. Distribution and Variability of Sea Surface Temperature Fronts in the South China Sea. Estuar. Coast. Shelf Sci. 2020, 240, 106793. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Yu, J.; Zhang, X.; Yang, H.; Ma, X. Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea. Remote Sens. 2025, 17, 3024. https://doi.org/10.3390/rs17173024
Zhu R, Yu J, Zhang X, Yang H, Ma X. Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea. Remote Sensing. 2025; 17(17):3024. https://doi.org/10.3390/rs17173024
Chicago/Turabian StyleZhu, Ruichen, Jingjie Yu, Xingzhi Zhang, Haiyuan Yang, and Xin Ma. 2025. "Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea" Remote Sensing 17, no. 17: 3024. https://doi.org/10.3390/rs17173024
APA StyleZhu, R., Yu, J., Zhang, X., Yang, H., & Ma, X. (2025). Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea. Remote Sensing, 17(17), 3024. https://doi.org/10.3390/rs17173024