Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras
Abstract
1. Introduction
2. Layout and Design Principles of the On-Orbit Geometric Calibration System
3. Influence of Temperature on the On-Orbit Geometric Calibration System
3.1. Influence of Temperature on the Focal Plane and Reference Laser Unit
3.2. Influence of Temperature on the Laser Relay Folding Unit
4. Optimized Thermal Stability Design of the On-Orbit Geometric Calibration System
4.1. Heat Elimination Design of the Reference Laser Unit Collimation Optical System
4.2. Design of the Optical System of the Perturbation-Resistant Laser Relay Folding Unit
5. Thermal Stability Simulation Analysis of the On-Orbit Geometric Calibration System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhan, H.; Fan, S.; Rao, Q.; Hong, Z.; You, Z.; Xing, F.; Liu, C. High-accuracy real-time attitude determination and imagery positioning system for satellite-based remote sensing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Hu, H.; Liu, C.; Zhang, Y.; Feng, Q.; Liu, S. Optimal design of segmented planar imaging for dense azimuthal sampling lens array. Opt. Express 2021, 29, 24300–24314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fang, X.; Li, T.; Gu, G.; Li, H.; Shao, Y.; Jiang, X.; Li, B. Multi-Channel Hyperspectral Imaging Spectrometer Design for Ultraviolet Detection in the Atmosphere of Venus. Remote Sens. 2024, 16, 1099. [Google Scholar] [CrossRef]
- Collin, A.; Andel, M.; Lecchini, D.; Claudet, J. Mapping sub-metre 3D land-sea coral reefscapes using superspectral worldview-3 satellite stereoimagery. Oceans 2021, 2, 315–329. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, X.; Li, T.; Wang, X.X.; Gu, G.C.; Li, H.S.; Lin, G.Y.; Li, B. Design method for eliminating spectral line tilt in a multiple sub-pupil ultra-spectral imager (MSPUI). Opt. Express 2024, 32, 11583–11599. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Li, X.; Yang, B. Global iterative geometric calibration of a linear optical satellite based on sparse GCPs. IEEE Trans. Geosci. Remote Sens. 2019, 58, 436–446. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission description and initial on-orbit performance. Astron. J. 2010, 140, 1868. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X. The system overview and geometric image quality of the TH-1 satellite. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 511–516. [Google Scholar] [CrossRef]
- Cao, B.; Jianrong, W.; Yan, H.; Yuan, L.; Xiuce, Y.; Xueliang, L.; Gang, L.; Yongqiang, W.; Zhuang, L. On-orbit geometric calibration and preliminary accuracy verification of GaoFen-14 (GF-14) optical two linear-array stereo camera. Eur. J. Remote Sens. 2023, 56, 2289013. [Google Scholar] [CrossRef]
- Ye, J.; Lin, X.; Xu, T. Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sens. 2017, 9, 737. [Google Scholar] [CrossRef]
- Chen, X.; Xing, F.; You, Z.; Zhong, X.; Qi, K. On-orbit high-accuracy geometric calibration for remote sensing camera based on star sources observation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Xie, P.; Liu, S. Design of exterior orientation parameters variation real-time monitoring system in remote sensing cameras. Remote Sens. 2024, 16, 3936. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, M.; Liu, C.; Wu, Q.; Guo, L. Heat management solutions for the space camera: From design to orbital operations. Case Stud. Therm. Eng. 2025, 65, 105676. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Mei, Q.; Wang, Y.; Song, S.; Yu, F. On-orbit thermal deformation prediction for a high-resolution satellite camera. Appl. Therm. Eng. 2021, 195, 117152. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, J.; Song, X.; Lu, P.; Zhao, H.; Zhao, Y. Thermal control method of high temperature stability for high resolution space camera. In Proceedings of the International Conference on Remote Sensing, Surveying, and Mapping (RSSM 2024), Wuhan, China, 12–14 January 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13170, pp. 182–189. [Google Scholar] [CrossRef]
- Elhefnawy, A.; Elmaihy, A.; Elweteedy, A. Passive thermal control design and analysis of a university-class satellite. J. Therm. Anal. Calorim. 2022, 147, 13633–13651. [Google Scholar] [CrossRef]
- Sundu, H.; Döner, N. Detailed thermal design and control of an observation satellite in low earth orbit. Eur. Mech. Sci. 2020, 4, 171–178. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Xie, P.; Liu, S.; Wang, X.; Zhang, Y.; Song, W.; Zhao, Y. Stray light analysis and suppression of high-resolution camera line-of-sight variation real-time monitoring system (LoS Var RTMS). Opt. Express 2024, 32, 24184–24199. [Google Scholar] [CrossRef]
- Escobar, E.; Diaz, M.; Zagal, J.C. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Appl. Therm. Eng. 2016, 105, 490–500. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Kong, L.; Gu, S.; Zhang, L. Quasi-All-Passive Thermal Control System Design and On-Orbit Validation of Luojia 1-01 Satellite. Sensors 2019, 19, 827. [Google Scholar] [CrossRef]
- Song, W.; Xie, P.; Liu, S.; Xie, Y. Thermal stability design of asymmetric support structure for an off-axis space camera. Appl. Sci. 2021, 11, 5184. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Liu, S.; Yong, Q.; Wang, X.; Zhao, Y.; Ding, Y.; Xie, P. Design of a focusing system for micro-nano satellite remote sensing camera based on thermal control technology. J. Therm. Stress. 2024, 47, 909–926. [Google Scholar] [CrossRef]
- Yoo, J.; Han, J.Y.; Kim, H.K.; Choi, S.; Lee, W.K. Thermal analysis and control design for space optical telescope ROKITS. Int. J. Aeronaut. Space Sci. 2024, 25, 1554–1562. [Google Scholar] [CrossRef]
- Salih, H.A.; Hassoon, K.I.; Khamis, R.A. Investigating some parameters of q-Gaussian laser beam in plasma. Phys. Plasmas 2022, 29, 023103. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Zhi, D.; Fang, X.; Li, T.; Du, W.F.; Wang, X.X.; Li, H.S.; Sun, F.K.; Gu, G.C. Stray light analysis and suppression of a UV multiple sub-pupil ultra-spectral imager. Appl. Opt. 2024, 63, 6112–6120. [Google Scholar] [CrossRef]
- Bach, H.; Neuroth, N. The Properties of Optical Glass; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Kaděra, P.; Sánchez-Pastor, J.; Eskandari, H.; Tyc, T.; Sakaki, M.; Schusler, M.; Jakoby, R.; Benson, N.; Jimenez-Saez, A.; Lacik, J. Wide-angle ceramic retroreflective luneburg lens based on quasi-conformal transformation optics for mm-wave indoor localization. IEEE Access 2022, 10, 41097–41111. [Google Scholar] [CrossRef]
- Yoder, P.R., Jr. Prism design and applications. In Opto-Mechanical Systems Design, Two Volume Set; CRC Press: Boca Raton, FL, USA, 2018; pp. 410–471. [Google Scholar]
- Shao, M.; Zhang, L.; Jia, X. Optomechanical integrated optimization of a lightweight mirror for space cameras. Appl. Opt. 2021, 60, 539–546. [Google Scholar] [CrossRef] [PubMed]
Material | Elastic Modulus (Gpa) | Poisson’s Ratio | Coefficient of Thermal Expansion (10−6/K) | Density (g/cm3) |
---|---|---|---|---|
Aluminum alloy | 71.7 | 0.33 | 23.6 | 2.81 |
System length/mm | 96 | 0.24 | 0.1 | 2.53 |
Surface Number | Radius (mm) | Thickness (mm) | Materials | Diameter (mm) |
---|---|---|---|---|
0 | / | 5 | / | / |
1 | 31.641 | 2 | ZF6 | 6 |
2 | 17.794 | 5.2 | / | / |
3 | −13.772 | 3 | H-ZF3 | 8 |
4 | −8.319 | 3 | / | / |
5 | −74.016 | 3 | H-ZF1A | 10 |
6 | −24.266 | / | / | / |
Materials | Elastic Modulus (Gpa) | Poisson’s Ratio | Coefficient of Thermal Expansion (10−6/K) | Density (g/cm3) |
---|---|---|---|---|
ZF6 | 54.7 | 0.216 | 8 | 4.78 |
H-ZF3 | 88.3 | 0.254 | 9 | 3.06 |
H-ZF1A | 82.6 | 0.237 | 8.5 | 2.79 |
Component Number | Direction | Offset (μm) | Offset Angle (″) |
---|---|---|---|
M1 | X | 0.008 | 0.0172 |
Y | 1.014 | 2.062 | |
M2 | X | 0.031 | 0.062 |
Y | 0.974 | 2.008 | |
M3 | X | 0.013 | 0.0262 |
Y | 0.045 | 0.0996 | |
System changes | X | 0.051 | 0.105 |
Y | 0.021 | 4.16 |
Surface Number | Radius (mm) | Thickness (mm) | Material | Diameter (mm) |
---|---|---|---|---|
0 | / | 5 | / | / |
1 | 17.95 | 2 | H-QF1 | 6 |
2 | 12 | 5.2 | / | / |
3 | −17.94 | 3 | H-ZF5 | 8 |
4 | −9.34 | 3 | / | / |
5 | −74.016 | 3 | H-ZF1A | 10 |
6 | −24.266 | / | / | / |
Direction | Offset (μm) | Offset Angle (″) | Divergence Angle Variation (″) |
---|---|---|---|
X | −0.01 (Before optimization 0.051) | −0.02 (Before optimization 0.105) | 2.0 (Before optimization 0.26°) |
Y | 0.08 (Before optimization 0.021) | 0.16 (Before optimization 4.16) | 2.3 (Before optimization 0.26°) |
Laser Relay Folding Unit | Volume (cm3) | Material | Mass (g) |
---|---|---|---|
Reflective right-angle prism | 9.49 | SI | 2212 3037 2400 |
SIC | |||
Glass–ceramic | |||
Right-angle cone mirror | 2.74 | SI | 638 |
SIC | 877 | ||
Glass–ceramic | 693 |
Material (Structure/Mirror Body) | Maximum Displacement (μm) |
---|---|
Aluminum Alloy/Silicon | 4.45 |
Aluminum Alloy/Glass–ceramic | 4.37 |
Invar/Silicon | 0.39 |
Invar/Glass–ceramic | 0.38 |
Material | Mirror Surface | Rotation about the Three Axes (″) | Rigid Body Displacement (μm) | ||||
---|---|---|---|---|---|---|---|
X Axis | Y Axis | Z Axis | X Direction | Y Direction | Z Direction | ||
Aluminum Alloy/Silicon | R1 | 1.25 | 2.87 | 1.02 | −9.73 | 0.11 | 11.98 |
R2 | 0.46 | −0.78 | 0.99 | 3.4 | −2.68 | −0.39 | |
Aluminum Alloy/Glass–ceramic | R1 | 1.43 | 3.46 | 1.1 | −12.1 | 0.82 | 14.35 |
R2 | 0.24 | −1.74 | 0.97 | 7.12 | −3.46 | −3.25 | |
Invar/Silicon | R1 | 0.05 | −0.39 | −0.01 | 1.65 | −0.19 | −1.53 |
R2 | 0.04 | 0.16 | 0.01 | −0.82 | 0.18 | 0.28 | |
Invar/Glass–ceramic | R1 | 0.04 | −0.29 | 0.01 | 1.28 | 0.14 | −1.18 |
R2 | 0.01 | 0.01 | 0.01 | 0.27 | 0.04 | 0.16 |
On-Orbit Geometric Calibration System | Mirror Surface | Rotation About the Three Axes (″) | Rigid Body Displacement (μm) | ||||
---|---|---|---|---|---|---|---|
X Axis | Y Axis | Z Axis | X Direction | Y Direction | Z Direction | ||
Reference laser unit | M1-1 | 0.93 | −0.04 | 0.01 | 3 × 10−3 | 0.22 | −0.073 |
M1-2 | 0.93 | −0.03 | 0.01 | 3.14 × 10−3 | 0.23 | −0.065 | |
M2-3 | 0.96 | −0.01 | 0.01 | 8.27 × 10−4 | 0.23 | −0.042 | |
M2-4 | 1.02 | −0.05 | 0.02 | 2.8 × 10−3 | 0.23 | −0.031 | |
M3-5 | 1.08 | 0.02 | 0.05 | −6.98 × 10−3 | 0.28 | −0.015 | |
M3-6 | 0.08 | −0.01 | 0.05 | 5.14 × 10−3 | 0.21 | −0.018 | |
Laser relay folding unit | R1 | 0.05 | −0.42 | −0.01 | 1.72 | −0.28 | −1.64 |
R2 | 0.04 | 0.35 | 0.01 | −0.93 | 0.19 | 0.32 | |
Star tracker unit | Dichroic mirror | 0.06 | 0.07 | 0.01 | 0.08 | 0.08 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, X.; Liu, C.; Xing, F.; Xie, P.; Liu, S.; Wang, X.; Zhang, Y.; Song, W.; Zhao, Y. Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras. Remote Sens. 2025, 17, 2978. https://doi.org/10.3390/rs17172978
Liu H, Chen X, Liu C, Xing F, Xie P, Liu S, Wang X, Zhang Y, Song W, Zhao Y. Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras. Remote Sensing. 2025; 17(17):2978. https://doi.org/10.3390/rs17172978
Chicago/Turabian StyleLiu, Hongxin, Xuedi Chen, Chunyu Liu, Fei Xing, Peng Xie, Shuai Liu, Xun Wang, Yuxin Zhang, Weiyang Song, and Yanfang Zhao. 2025. "Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras" Remote Sensing 17, no. 17: 2978. https://doi.org/10.3390/rs17172978
APA StyleLiu, H., Chen, X., Liu, C., Xing, F., Xie, P., Liu, S., Wang, X., Zhang, Y., Song, W., & Zhao, Y. (2025). Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras. Remote Sensing, 17(17), 2978. https://doi.org/10.3390/rs17172978