Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022)
Abstract
1. Introduction
2. Data and Methods
2.1. Satellite Data Preprocessing
2.2. Development of Lit Fishing Boat Identification Remote-Sensing Algorithm
2.2.1. 2D-CFAR Light Extraction Method
2.2.2. Morphology Light Extraction Method
2.2.3. Mask Processing
2.3. Validation of Lit Fishing Boat Identification Remote-Sensing Algorithm
2.4. Calculation of the Light Power of the Lit Fishing Boat
2.5. Spatial Distribution Entropy
3. The Results
3.1. Performance of Lit Fishing Boat Identification Remote-Sensing Algorithm
3.2. Classify of Lit Fishing Boats
3.3. Variations in the Abundance of Two-Types Lit Fishing Boats
3.4. Spatial Variability of Two-Types Lit Fishing Boats
4. Discussion
4.1. Performance Comparison and Applicability
4.2. Driving Forces Behind the Spatiotemporal Variations of Lit Fishing Boats in the SCS
4.3. Advantages of Fisheries Management Based on Lit Fishing Vessel Distribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, Y.; Tian, Y.; Fu, C.; Wang, B.; Li, J.; Ren, Y.; Wan, R. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 2018, 208, 22–33. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Y.; Cai, Y.; Zhang, K.; Zhang, P.; Jing, Z.; Wu, Q.; Ma, S.; Liu, H.; Chen, Z.; et al. Trend in fishing activity in the open South China Sea estimated from remote sensing of the lights used at night by fishing vessels. ICES J. Mar. Sci. 2022, 79, 230–241. [Google Scholar] [CrossRef]
- Watson, R.A.; Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 2018, 93, 171–177. [Google Scholar] [CrossRef]
- Hoang, T.X.; Le, D.T.; Nguyen, H.M.; Vuong, N.D.T. Labor market impacts and responses: The economic consequences of a marine environmental disaster. J. Dev. Econ. 2020, 147, 102538. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Sun, C.; Dong, Y.; Zhang, S. Satellite Observation of the Marine Light-Fishing and Its Dynamics in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 1394. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Tian, Y.; Jing, Y.; Liu, S.; Liu, X.; Zhang, Y. Advances in the use of nighttime light data to monitor and assess coastal fisheries under the impacts of human activities and climate and environmental changes: A case study in the Beibu Gulf. Mar. Policy 2022, 144, 105227. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M. Fisheries governance in the south China sea: Problems, progress, and prospects. Mar. Policy 2020, 121, 104237. [Google Scholar] [CrossRef]
- Cui, H.-M.; Zulfiqar, K. Effective law enforcement in gray zone operations: A Chinese perspective of coastguard law implementation in delimited maritime zones. Mar. Policy 2024, 169, 106366. [Google Scholar] [CrossRef]
- Chen, W.-C.; Ou, C.-H.; Yang, M.-H.; Shih, Y.-C. China’s gray zone actions in the East China Sea, Taiwan Strait, and South China Sea: A comparative study and impact on fisheries. Mar. Policy 2024, 167, 106246. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Ma, S.; Huang, Y.; Gao, L.; Du, G.; Wu, Q. Analysis of the index weights of the order evaluation system during the summer fishing moratorium in the South China Sea. J. Shanghai Ocean Univ. 2022, 31, 491–501. [Google Scholar]
- Zhang, L.; Ma, S.; Tang, Y.; Zhou, Y.; Wu, Q. Acceptance of the summer fishing moratorium among small-scale fishers in China. Mar. Policy 2025, 173, 106556. [Google Scholar] [CrossRef]
- Ke, C.; Gu, Y.-G.; Huang, X.; Wu, W.; Ma, Z.; Song, C. Editorial: Fisheries ecological environment in South China Sea. Front. Environ. Sci. 2022, 10, 981443. [Google Scholar] [CrossRef]
- Exeter, O.M.; Htut, T.; Kerry, C.R.; Kyi, M.M.; Mizrahi, M.; Turner, R.A.; Witt, M.J.; Bicknell, A.W.J. Shining Light on Data-Poor Coastal Fisheries. Front. Mar. Sci. 2021, 7, 625766. [Google Scholar] [CrossRef]
- Straka, W.C.; Seaman, C.J.; Baugh, K.; Cole, K.; Stevens, E.; Miller, S.D. Utilization of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band for Arctic Ship Tracking and Fisheries Management. Remote Sens. 2015, 7, 971–989. [Google Scholar] [CrossRef]
- Cozzolino, E.; Lasta, C.A. Use of VIIRS DNB satellite images to detect jigger ships involved in the Illex argentinus fishery. Remote Sens. Appl. Soc. Environ. 2016, 4, 167–178. [Google Scholar] [CrossRef]
- Oozeki, Y.; Inagake, D.; Saito, T.; Okazaki, M.; Fusejima, I.; Hotai, M.; Watanabe, T.; Sugisaki, H.; Miyahara, M. Reliable estimation of IUU fishing catch amounts in the northwestern Pacific adjacent to the Japanese EEZ: Potential for usage of satellite remote sensing images. Mar. Policy 2018, 88, 64–74. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, S.; Li, J.; Sun, P.; Liu, Y.; Xing, Q.; He, Q.; Tian, Y. Climate-induced long-term variations of the Arctic ecosystems. Prog. Oceanogr. 2023, 213, 103006. [Google Scholar] [CrossRef]
- Croft, T.A. Nighttime Images of Earth from Space. Sci. Am. 1978, 239, 86–89. [Google Scholar] [CrossRef]
- Xue, C.; Gao, C.; Hu, J.; Qiu, S.; Wang, Q. Marine Boat Lights Detection Method Based on Sparse Representation for Low Light Remote Sensing Images During Night. J. Electron. Inf. Technol. 2022, 44, 1747–1757. [Google Scholar]
- Cheng, T.F. Spatial-Temporal Variation of Light-Fishing Grounds Based on Nighttime Light Remote Sensing in the Arabian Sea; Shanghai Ocean University: Shanghai, China, 2023; pp. 21–35. [Google Scholar]
- Tsuda, M.E.; Miller, N.A.; Saito, R.; Park, J.; Oozeki, Y. Automated VIIRS Boat Detection Based on Machine Learning and Its Application to Monitoring Fisheries in the East China Sea. Remote Sens. 2023, 15, 2911. [Google Scholar] [CrossRef]
- Kiyofuji, H.; Saitoh, S.-I. Use of nighttime visible images to detect Japanese common squid fishing areas and potential migration routes in the Sea of Japan. Mar. Ecol. Prog. Ser. 2004, 276, 173–186. [Google Scholar] [CrossRef]
- Wenyue, W. Spatio-Tempral Distribution of Fishery Production Intensity in the South China Sea Based on the Night-Time Images; The University of Chinese Academy of Sciences: Beijing, China, 2016; pp. 21–28. [Google Scholar]
- Xue, C.; Gao, C.; Hu, J.; Qiu, S.; Wang, Q. Automatic boat detection based on diffusion and radiation characterization of boat lights during night for VIIRS DNB imaging data. Opt. Express 2022, 30, 13024–13038. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Asanuma, I.; Park, J.G.; Mackin, K.J.; Mittleman, J. Estimation of vessel traffic density from Suomi NPP VIIRS day/night band. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Huang, R.; Wu, W.; Yu, K. Building consistent time series night-time light data from average DMSP/OLS images for indicating human activities in a large-scale oceanic area. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103023. [Google Scholar] [CrossRef]
- Zhao, Z.; Qiu, S.; Zhang, Y.; Yao, W.; Liu, Z.; Wang, X.; Shu, Z.; Wang, F.; Cheng, H.; Zhang, Y.; et al. Vessel Target Detection Method Based on an Improved CFAR Method in Nighttime Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4209213. [Google Scholar] [CrossRef]
- Lebona, B.; Kleynhans, W.; Celik, T.; Mdakane, L. Ship Detection Using Viirs Sensor Specific Data. In Proceedings of the 2016 Ieee International Geoscience and Remote Sensing Symposium (Igarss), Beijing, China, 10–15 July 2016; pp. 1245–1247. [Google Scholar]
- Li, J.; Cai, Y.; Zhang, P.; Zhang, Q.; Jing, Z.; Wu, Q.; Qiu, Y.; Ma, S.; Chen, Z. Satellite observation of a newly developed light-fishing “hotspot” in the open South China Sea. Remote Sens. Environ. 2021, 256, 112312. [Google Scholar] [CrossRef]
- Xing, Q.; Yu, H.; Wang, H.; Ito, S.; Chai, F. Mesoscale eddies modulate the dynamics of human fishing activities in the global midlatitude ocean. Fish Fish. 2023, 24, 527–543. [Google Scholar] [CrossRef]
- Seto, K.L.; Miller, N.A.; Kroodsma, D.; Hanich, Q.; Miyahara, M.; Saito, R.; Boerder, K.; Tsuda, M.; Oozeki, Y.; S., O.U. Fishing through the cracks: The unregulated nature of global squid fisheries. Sci. Adv. 2023, 9, eadd8125. [Google Scholar] [CrossRef] [PubMed]
- Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef]
- Hassen, R.; Wang, Z.; Salama, M.M.A. Image sharpness assessment based on local phase coherence. IEEE Trans Image Process 2013, 22, 2798–2810. [Google Scholar] [CrossRef]
- Rohling, H. Radar Cfar Thresholding in Clutter and Multiple Target Situations. IEEE Trans. Aerosp. Electron. Syst. 1983, 19, 608–621. [Google Scholar] [CrossRef]
- Cao, C.; Bai, Y. Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring. Remote Sens. 2014, 6, 11915–11935. [Google Scholar] [CrossRef]
- Paolo, F.S.; Kroodsma, D.; Raynor, J.; Hochberg, T.; Davis, P.; Cleary, J.; Marsaglia, L.; Orofino, S.; Thomas, C.; Halpin, P. Satellite mapping reveals extensive industrial activity at sea. Nature 2024, 625, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Hsu, F.-C.; Baugh, K.E. VIIRS Nightfire: Satellite Pyrometry at Night. Remote Sens. 2013, 5, 4423–4449. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C.; Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 2015, 9, 14. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef]
- SCSPI. China Begins Fishing Moratorium in May, While Vietnamese Fishing Vessels Intensify Illegal Activities. 2020. Available online: http://www.scspi.org/zh/dtfx/1591200000 (accessed on 15 October 2024).
- Huang, Y. Consuming geopolitics and feeling maritime territoriality: The case of China’s patriotic tourism in the South China Sea. Political Geogr. 2022, 98, 102669. [Google Scholar] [CrossRef]
- Mitchell, M.D. The South China Sea: A Geopolitical Analysis. J. Geogr. Geol. 2016, 8, 14. [Google Scholar] [CrossRef]
- Runxi, S.; Teng, W. Overview of Illegal Fishing Activities by Vietnamese Fishing Vessels in the South China Sea in 2022. 2022. Available online: http://www.scspi.org/zh/dtfx/1687235456 (accessed on 15 October 2024).
- Han, Y.; Zhang, Y.; Liu, W.; Liu, C. Development Trends and Policies of Marine Fishing and Fisheries in Countries and Regions Surrounding the South China Sea. Word Agric. 2016, 1, 102–107. [Google Scholar]
- Zhang, H. Fisheries cooperation in the South China Sea: Evaluating the options. Mar. Policy 2018, 89, 67–76. [Google Scholar] [CrossRef]
- Hsiao, A. Opportunities for fisheries enforcement cooperation in the South China Sea. Mar. Policy 2020, 121, 103569. [Google Scholar] [CrossRef]
- Yugui, Z. Research on the Effects of China’s Summer Fishing Moratorium; Ocean University of China: Qingdao, China, 2009. [Google Scholar]
- Zou, J.; Jin, X.; Shan, X.; Ren, Y.; Chen, Y. Whether the summer fishing moratorium can improve the status of fisheries resources in the Yellow Sea and Bohai Sea. Heliyon 2024, 10, e38100. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.W.; Wang, Q.; Huang, J.; Yang, B.; Pan, P. Evaluation of the Effectiveness of the Closed Season Fishing Ban in the Northern Continental Shelf Fisheries of the South China Sea in 2016. Fish. Sci. Technol. Inf. 2016, 43, 318–323. [Google Scholar]
- Yu, J.; Hu, Q.; Yuan, H.; Chen, P. Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data. South China Fish. Sci. 2018, 14, 1–9. [Google Scholar]
- SCSPI. Surge in Illegal Activities by Vietnamese Fishing Vessels in March in Hainan and the Entire South China Sea | Vietnamese Fishing Vessel Tracking and Monitoring Project Report (3). 2020. Available online: http://www.scspi.org/zh/dtfx/1585922607 (accessed on 15 October 2024).
- General Statistics Office. Statistical Summary Book of Viet Nam; Statistical Publishing House: Hanoi, Vietnam, 2020; pp. 285–325. Available online: https://www.nso.gov.vn/en/data-and-statistics/2021/07/statistical-summary-book-of-viet-nam-2020/ (accessed on 22 February 2025).
- General Statistics Office. Statistical Summary Book of Viet Nam; Statistical Publishing House: Hanoi, Vietnam, 2023; pp. 553–693. Available online: https://www.nso.gov.vn/en/default/2024/12/statistical-summary-book-of-viet-nam-2023/ (accessed on 22 February 2025).
- SCSPI. Persisting at High Levels: Illegal Fishing Activities by Vietnamese Vessels in the South China Sea in July. 2020. Available online: http://www.scspi.org/zh/dtfx/1596530374 (accessed on 15 October 2024).
- Lin, P.; Hu, J.; Zheng, Q.; Sun, Z.; Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island, China. Ocean Dyn. 2016, 66, 387–399. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Li, Y.Z.; Chen, G.B.; Huang, M.F. The relationship between major upwelling and the upwelling fishing grounds in the South China Sea. Mar. Sci. 2013, 39, 131–137. [Google Scholar]
- Dan, L. Dilemmas and Solutions for Marine Environmental Cooperation in the South China Sea: Including a Rebuttal to Relevant Arbitration Issues in the South China Sea Arbitration Case. Foreign Aff. Rev. 2017, 34, 113–140. [Google Scholar]
- Dang, X.; Bai, Y.; Gong, F.; Chen, X.; Zhu, Q.; Huang, H.; He, X. Different Responses of Phytoplankton to the ENSO in Two Upwelling Systems of the South China Sea. Estuaries Coasts 2022, 45, 485–500. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, Y.; Chen, Z.; Zhang, P.; Zhang, K.; Fan, J.; Chen, G.; Cai, Y.; Sun, M. Advances in pelagic fishery resources survey and assessment in open South China Sea. South China Fish. Sci. 2018, 14, 118–127. [Google Scholar]
- SCSPI. Policy Brief: The First Joint Analysis Report on Fisheries Resources in the South China Sea. 2022. Available online: http://www.scspi.org/zh/dtfx/1664075772 (accessed on 15 October 2024).
- Cousido-Rocha, M.; Cerviño, S.; Alonso-Fernández, A.; Gil, J.; Herraiz, I.G.; Rincón, M.M.; Ramos, F.; Rodríguez-Cabello, C.; Sampedro, P.; Vila, Y.; et al. Applying length-based assessment methods to fishery resources in the Bay of Biscay and Iberian Coast ecoregion: Stock status and parameter sensitivity. Fish. Res. 2022, 248, 106197. [Google Scholar] [CrossRef]
VBD | This Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moon Phase | Date | Validation Light Points | Detect Light Points | Matched Light Points | Precision (%) | Recall (%) | F1 (%) | Validation Light Points | Detect Light Points | Matched Light Points | Precision (%) | Recall (%) | F1 (%) |
Concave moon | 20130109 | 573 | 897 | 548 | 61.09 | 95.64 | 74.56 | 573 | 580 | 547 | 94.31 | 95.56 | 94.88 |
20140529 | 704 | 823 | 683 | 82.99 | 97.02 | 89.46 | 704 | 701 | 685 | 97.72 | 97.30 | 97.51 | |
20150120 | 320 | 432 | 295 | 68.29 | 92.19 | 78.46 | 320 | 317 | 301 | 94.95 | 94.06 | 94.51 | |
20160303 | 1465 | 1510 | 1265 | 83.77 | 86.35 | 85.04 | 1465 | 1336 | 1326 | 99.25 | 90.1 | 94.68 | |
20170126 | 321 | 550 | 298 | 54.18 | 92.83 | 68.43 | 321 | 323 | 310 | 95.98 | 96.57 | 96.27 | |
20180116 | 1129 | 1265 | 1025 | 81.03 | 90.79 | 85.63 | 1129 | 967 | 965 | 99.79 | 85.47 | 92.08 | |
20190101 | 537 | 956 | 524 | 55.39 | 97.58 | 70.67 | 537 | 537 | 529 | 98.51 | 98.51 | 98.51 | |
20200126 | 1026 | 249 | 195 | 19.01 | 30.59 | 50.59 | 1026 | 984 | 971 | 98.68 | 94.64 | 96.62 | |
20210112 | 435 | 389 | 282 | 72.49 | 64.83 | 68.45 | 435 | 275 | 274 | 99.64 | 62.99 | 77.18 | |
20220408 | 750 | 1575 | 696 | 44.19 | 92.80 | 59.87 | 750 | 693 | 665 | 95.96 | 88.67 | 92.17 | |
Crescent Moon | 20130320 | 508 | 992 | 478 | 48.19 | 94.10 | 63.74 | 508 | 495 | 473 | 95.55 | 93.11 | 94.31 |
20140307 | 891 | 1433 | 862 | 60.15 | 96.75 | 74.18 | 891 | 865 | 843 | 97.46 | 94.61 | 96.01 | |
20150129 | 155 | 212 | 148 | 69.81 | 95.48 | 80.65 | 155 | 126 | 123 | 97.62 | 79.35 | 87.54 | |
20160301 | 359 | 525 | 318 | 60.57 | 88.58 | 71.95 | 359 | 335 | 326 | 97.31 | 90.81 | 93.95 | |
20170121 | 149 | 250 | 143 | 57.20 | 95.97 | 71.68 | 149 | 142 | 136 | 95.77 | 91.28 | 93.47 | |
20180108 | 427 | 878 | 414 | 47.15 | 96.96 | 63.45 | 427 | 403 | 396 | 98.26 | 92.74 | 95.42 | |
20190128 | 607 | 639 | 575 | 89.98 | 94.73 | 92.30 | 607 | 560 | 559 | 99.82 | 92.09 | 95.80 | |
20200103 | 658 | 822 | 527 | 64.11 | 80.09 | 71.22 | 658 | 644 | 634 | 98.45 | 96.35 | 97.39 | |
20210105 | 92 | 131 | 63 | 48.09 | 68.48 | 56.50 | 92 | 82 | 80 | 97.56 | 86.96 | 91.95 | |
20220211 | 184 | 208 | 156 | 75.00 | 84.78 | 79.59 | 184 | 166 | 157 | 94.58 | 85.33 | 89.71 | |
Gibbous Moon | 20130125 | 105 | 127 | 100 | 78.74 | 95.24 | 86.21 | 105 | 31 | 31 | 100 | 29.52 | 45.59 |
20140318 | 59 | 109 | 55 | 50.46 | 93.22 | 65.48 | 59 | 52 | 48 | 92.31 | 81.36 | 86.49 | |
20150207 | 36 | 61 | 36 | 59.02 | 100 | 94.23 | 36 | 27 | 26 | 96.30 | 72.22 | 82.54 | |
20160224 | 25 | 58 | 21 | 36.21 | 84 | 50.60 | 25 | 22 | 19 | 86.36 | 76 | 80.85 | |
20170115 | 87 | 118 | 78 | 66.10 | 89.66 | 96.47 | 87 | 83 | 82 | 98.80 | 94.25 | 96.47 | |
20180106 | 104 | 125 | 90 | 72.00 | 86.54 | 78.60 | 104 | 87 | 86 | 98.85 | 82.69 | 90.05 | |
20190125 | 136 | 150 | 118 | 78.67 | 86.76 | 82.52 | 136 | 118 | 115 | 97.46 | 84.56 | 80.55 | |
20200110 | 26 | 32 | 23 | 71.88 | 88.46 | 79.31 | 26 | 29 | 23 | 79.31 | 88.46 | 83.46 | |
20210101 | 21 | 15 | 14 | 93.33 | 66.67 | 77.78 | 21 | 10 | 7 | 70.00 | 33.33 | 45.16 | |
20220119 | 43 | 95 | 41 | 43.16 | 95.35 | 59.42 | 43 | 35 | 35 | 100 | 81.40 | 89.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zheng, W.; Tang, S.; Zhang, L.; Liu, Y.; Yu, J. Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022). Remote Sens. 2025, 17, 2967. https://doi.org/10.3390/rs17172967
Wang D, Zheng W, Tang S, Zhang L, Liu Y, Yu J. Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022). Remote Sensing. 2025; 17(17):2967. https://doi.org/10.3390/rs17172967
Chicago/Turabian StyleWang, Dongliang, Wendi Zheng, Shilin Tang, Lei Zhang, Yupeng Liu, and Jing Yu. 2025. "Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022)" Remote Sensing 17, no. 17: 2967. https://doi.org/10.3390/rs17172967
APA StyleWang, D., Zheng, W., Tang, S., Zhang, L., Liu, Y., & Yu, J. (2025). Nighttime Remote Sensing Analysis of Lit Fishing Boats: Fisheries Management Challenges in the South China Sea (2013–2022). Remote Sensing, 17(17), 2967. https://doi.org/10.3390/rs17172967