DEMNet: Dual Encoder–Decoder Multi-Frame Infrared Small Target Detection Network with Motion Encoding
Abstract
1. Introduction
1.1. Related Works
1.1.1. Single-Frame Methods
1.1.2. Multi-Frame Methods
1.2. Motivation
- Although these methods adopt various spatiotemporal feature fusion strategies, most rely on implicit extraction via 3D convolutions or attention mechanisms, and they often overlook the motion consistency of the target. Li et al. [33] proposed an explicit encoding method that maps the target’s position within each frame to model its motion features. However, the motion encoding strategy is insufficiently developed and fails to capture the relative positional relationships of the target across frames, leaving substantial room for refinement in motion representation.
- Current methods usually integrate spatiotemporal feature extraction into one encode-decode architecture, which may impede the performance for the tight coupling of the spatial and temporal feature extraction process.
- The commonly used false alarm rate (Fa) metric presents limitations. Fa is defined as the ratio of non-target pixels incorrectly predicted as targets to the total number of pixels in the image, which fails to intuitively reflect the model’s ability to suppress a target-level false positive ratio. In practical applications, detection results are typically processed on a per-target basis rather than per-pixel.
- (1)
- A dual encoder–decoder multi-frame infrared small target detection network, DEMNet, was proposed. The network integrates spatial and temporal contextual features and employs end-to-end learning to enhance the representation of dim and small targets under complex backgrounds.
- (2)
- Based on the motion consistency of infrared targets, a motion encoding strategy was introduced. It consists of inter-frame motion encoding and intra-frame location encoding to explicitly capture spatiotemporal motion characteristics and improve temporal feature utilization.
- (3)
- A target-level false alarm evaluation metric, FaT, was proposed to address the limitations of pixel-level metrics. FaT evaluates false alarms at the object level, providing a more intuitive and accurate assessment of the model’s false alarm suppression ability in practical scenarios.
- (4)
2. Methods
2.1. Overall Architecture
2.2. Spatial Feature Extractor Module
2.2.1. Encoder of SFEM
2.2.2. Decoder of SFEM
2.3. Motion Information Encoder Module
2.3.1. Inter-Frame Motion Encoding Module
- (1)
- When the position of the maximum pixel within the pooling region remains in the same direction across frames, the sign remains unchanged; when the direction changes, the sign is reversed.
- (2)
- By setting α = 0.8, it ensures that the mapping values are unique under all nine possible directional relationships between the positions of the maximum pixel in the past and current frames.
- (3)
- A square root operation is applied to to avoid conflicts where the summation of are the same across different previous frames, but the motion trajectories differ. For example, in one pooling region, the directional encoding for two previous frames may both be 1. In another region, the encodings for the same two frames may be 0 and 2, respectively. So, without the square root operation, the summation cannot differentiate between different motion trajectories.
Algorithm 1: Inter-Frame Motion Encoding |
Input: Feature map F Output: Mapping value vector V |
1. (F_pool,index) = 3DMaxPooling(F) 2: index_x(i) = index(i)%W // index_x [0,W) 3. index_y(i) = index(i)//W // index_y [0,H) 4. for i in range(T − 1): if index_x(i) < index_x(t): = −1 if index_x(i) = index_x(t): = 0 if index_x(i) > index_x(t): = 1 // Horizontal direction encoding 5. for i in range(T − 1): if index_y(i) < index_y (t): = −1 if index_y(i) = index_y (t): = 0 if index_y(i) > index_y (t): = 1 // Vertical direction encoding 6. for i in range(T − 1): // V+ = v(i) 7. V = V/(t − 1) 8. return V |
2.3.2. Intra-Frame Positional Encoding Module
Algorithm 2: Intra-Frame Positional Encoding Module |
Input: Feature map F Output: Mapping value vector D |
1: (F_pool,index) = 3DMaxPooling(F) // Kernel = (1,2,2), Stride = (1,2,2) 2: index_x(i) = index(i)%2 //The result is 0 or 1, which means on the left or right 3. index_y(i) = (index(i)//W)%2 // The result is 0 or 1, which means in the upper or lower area 4. for i in range(T): D(i) = 1.25 + // The codes of the four positions are 5: return D |
2.4. Motion Information Decoder Module
3. Experiments and Results
3.1. Dataset
3.2. Performance Evaluation Indices
3.3. Network Training
3.4. Ablation Study
3.4.1. Effectiveness of the MI Encoder
3.4.2. Effectiveness of the Spatial Feature Extractor
3.4.3. Optimal Number of Layers of MI Encoders
3.4.4. Optimal Number of Frames
3.5. Comparative Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Ma, Y.; Fan, F.; Wu, M.; Huang, J. A Double-Neighborhood Gradient Method for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1476–1480. [Google Scholar] [CrossRef]
- Tong, X.; Sun, B.; Wei, J.; Zuo, Z.; Su, S. EAAU-Net: Enhanced Asymmetric Attention U-Net for Infrared Small Target Detection. Remote Sens. 2021, 13, 3200. [Google Scholar] [CrossRef]
- Shao, X.; Fan, H.; Lu, G.; Xu, J. An Improved Infrared Dim and Small Target Detection Algorithm Based on the Contrast Mechanism of Human Visual System. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Qi, S.; Ma, J.; Tao, C.; Yang, C.; Tian, J. A Robust Directional Saliency-Based Method for Infrared Small-Target Detection Under Various Complex Backgrounds. IEEE Geosci. Remote Sens. Lett. 2013, 10, 495–499. [Google Scholar]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A Robust Infrared Small Target Detection Algorithm Based on Human Visual System. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar]
- Zhang, H.; Zhang, L.; Yuan, D.; Chen, H. Infrared Small Target Detection Based on Local Intensity and Gradient Properties. Infrared Phys. Technol. 2018, 89, 88–96. [Google Scholar] [CrossRef]
- Moradi, S.; Moallem, P.; Sabahi, M.F. A False-Alarm Aware Methodology to Develop Robust and Efficient Multi-Scale Infrared Small Target Detection Algorithm. Infrared Phys. Technol. 2018, 89, 387–397. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric Contextual Modulation for Infrared Small Target Detection. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 949–958. [Google Scholar]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional Local Contrast Networks for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Wang, K.; Du, S.; Liu, C.; Cao, Z. Interior Attention-Aware Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5002013. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for Infrared Small Object Detection. IEEE Trans. Image Process. 2023, 32, 364–376. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense Nested Attention Network for Infrared Small Target Detection. IEEE Trans. Image Process. 2023, 32, 1745–1758. [Google Scholar] [CrossRef]
- Liu, F.; Gao, C.; Chen, F.; Meng, D.; Zuo, W.; Gao, X. Infrared Small and Dim Target Detection with Transformer Under Complex Backgrounds. IEEE Trans. Image Process. 2023, 32, 5921–5932. [Google Scholar] [CrossRef]
- He, H.; Wan, M.; Xu, Y.; Kong, X.; Liu, Z.; Chen, Q.; Gu, G. WTAPNet: Wavelet Transform-Based Augmented Perception Network for Infrared Small-Target Detection. IEEE Trans. Instrum. Meas. 2024, 73, 5037217. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, R.; Zheng, B.; Wang, H.; Fu, Y. Infrared Small Target Detection with Scale and Location Sensitivity. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; IEEE: Seattle, WA, USA, 2024; pp. 17490–17499. [Google Scholar]
- Zhang, M.; Li, X.; Gao, F.; Guo, J.-R. IRMamba: Pixel Difference Mamba with Layer Restoration for Infrared Small Target Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025. [Google Scholar]
- Wang, P.; Wang, J.; Chen, Y.; Zhang, R.; Li, Y.; Miao, Z. Paying More Attention to Local Contrast: Improving Infrared Small Target Detection Performance via Prior Knowledge. arXiv 2024, arXiv:2411.13260. [Google Scholar] [CrossRef]
- Chen, T.; Tan, Z.; Chu, Q.; Wu, Y.; Liu, B.; Yu, N. TCI-Former: Thermal Conduction-Inspired Transformer for Infrared Small Target Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024. [Google Scholar]
- Lin, F.; Bao, K.; Li, Y.; Zeng, D.; Ge, S. Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection. IEEE Trans. Image Process. 2024, 33, 3047–3058. [Google Scholar] [CrossRef]
- Liu, C.; Song, X.; Yu, D.; Qiu, L.; Xie, F.; Zi, Y.; Shi, Z. Infrared Small Target Detection Based on Prior Guided Dense Nested Network. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5002015. [Google Scholar] [CrossRef]
- Chib, P.; Singh, P. Leveraging Language Prior for Infrared Small Target Detection. arXiv 2025, arXiv:2507.13113. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Gao, F.; Guo, J.-R.; Gao, X.; Zhang, J. SAIST: Segment Any Infrared Small Target Model Guided by Contrastive Language-Image Pretraining. In Proceedings of the Computer Vision and Pattern Recognition, Nashville, TN, USA, 10–17 June 2025. [Google Scholar]
- Zhang, M.; Wang, Y.; Guo, J.; Li, Y.; Gao, X.; Zhang, J. IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection. arXiv 2024, arXiv:2407.07520. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Shi, L. Detecting and Tracking Dim Moving Point Target in IR Image Sequence. Infrared Phys. Technol. 2005, 46, 323–328. [Google Scholar] [CrossRef]
- Kim, S.; Sun, S.-G.; Kim, K.-T. Highly Efficient Supersonic Small Infrared Target Detection Using Temporal Contrast Filter. Electron. Lett. 2014, 50, 81–83. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, H.; Tao, C.; Wei, Y. Infrared Moving Point Target Detection Based on Spatial–Temporal Local Contrast Filter. Infrared Phys. Technol. 2016, 76, 168–173. [Google Scholar] [CrossRef]
- Zhu, H.; Guan, Y.; Deng, L.; Li, Y.; Li, Y. Infrared Moving Point Target Detection Based on an Anisotropic Spatial-Temporal Fourth-Order Diffusion Filter. Comput. Electr. Eng. 2018, 68, 550–556. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; An, W. Infrared Dim and Small Target Detection via Multiple Subspace Learning and Spatial-Temporal Patch-Tensor Model. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3737–3752. [Google Scholar] [CrossRef]
- Wu, F.; Yu, H.; Liu, A.; Luo, J.; Peng, Z. Infrared Small Target Detection Using Spatiotemporal 4-D Tensor Train and Ring Unfolding. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5002922. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Zhang, L.; Zhang, Z. Sparse Regularization-Based Spatial–Temporal Twist Tensor Model for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000417. [Google Scholar] [CrossRef]
- Li, R.; An, W.; Xiao, C.; Li, B.; Wang, Y.; Li, M.; Guo, Y. Direction-Coded Temporal U-Shape Module for Multiframe Infrared Small Target Detection. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 555–568. [Google Scholar] [CrossRef]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Ling, J.; Su, H.; Jin, W.; Zhang, Y.; et al. A Dataset for Infrared Detection and Tracking of Dim-Small Aircraft Targets under Ground / Air Background. China Sci. Data 2020, 5, 291–302. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Q.; Zhang, T.; Cui, W.; Yan, P. Infrared Image Small-Target Detection Based on Improved FCOS and Spatio-Temporal Features. Electronics 2022, 11, 933. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D. Practical Approaches to Target Detection in Long Range and Low Quality Infrared Videos. Signal Image Process. Int. J. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Budavari, B. Target Detection and Classification Performance Enhancement Using Super-Resolution Infrared Videos. Signal Image Process. Int. J. 2021, 12, 33–45. [Google Scholar] [CrossRef]
- Ying, X.; Wang, Y.; Wang, L.; Sheng, W.; Liu, L.; Lin, Z.; Zhou, S. Local Motion and Contrast Priors Driven Deep Network for Infrared Small Target Super-Resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5480–5495. [Google Scholar] [CrossRef]
- Yan, P.; Hou, R.; Duan, X.; Yue, C.; Wang, X.; Cao, X. STDMANet: Spatio-Temporal Differential Multiscale Attention Network for Small Moving Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5602516. [Google Scholar] [CrossRef]
- Chen, S.; Ji, L.; Zhu, J.; Ye, M.; Yao, X. SSTNet: Sliced Spatio-Temporal Network with Cross-Slice ConvLSTM for Moving Infrared Dim-Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5000912. [Google Scholar] [CrossRef]
- Duan, W.; Ji, L.; Chen, S.; Zhu, S.; Ye, M. Triple-Domain Feature Learning with Frequency-Aware Memory Enhancement for Moving Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5006014. [Google Scholar] [CrossRef]
- Ying, X.; Liu, L.; Lin, Z.; Shi, Y.; Wang, Y.; Li, R.; Cao, X.; Li, B.; Zhou, S.; An, W. Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5002818. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, W.; Yan, P.; Tan, Y. IR-MPE: A Long-Term Optical Flow-Based Motion Pattern Extractor for Infrared Small Dim Targets. IEEE Trans. Instrum. Meas. 2025, 74, 5005415. [Google Scholar] [CrossRef]
- Peng, S.; Ji, L.; Chen, S.; Duan, W.; Zhu, S. Moving Infrared Dim and Small Target Detection by Mixed Spatio-Temporal Encoding. Eng. Appl. Artif. Intell. 2025, 144, 110100. [Google Scholar] [CrossRef]
- Zhu, S.; Ji, L.; Chen, S.; Duan, W. Spatial–Temporal-Channel Collaborative Feature Learning with Transformers for Infrared Small Target Detection. Image Vis. Comput. 2025, 154, 105435. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Xi, Y.; Tan, F.; Hou, Q. STIDNet: Spatiotemporally Integrated Detection Network for Infrared Dim and Small Targets. Remote Sens. 2025, 17, 250. [Google Scholar] [CrossRef]
- Zhu, S.; Ji, L.; Zhu, J.; Chen, S.; Duan, W. TMP: Temporal Motion Perception with Spatial Auxiliary Enhancement for Moving Infrared Dim-Small Target Detection. Expert Syst. Appl. 2024, 255, 124731. [Google Scholar] [CrossRef]
- Zhang, M.; Ouyang, Y.; Gao, F.; Guo, J.; Zhang, Q.; Zhang, J. MOCID: Motion Context and Displacement Information Learning for Moving Infrared Small Target Detection. Proc. AAAI Conf. Artif. Intell. 2025, 39, 10022–10030. [Google Scholar] [CrossRef]
- Yuan, S.; Qin, H.; Kou, R.; Yan, X.; Li, Z.; Peng, C.; Wu, D.; Zhou, H. Beyond Full Labels: Energy-Double-Guided Single-Point Prompt for Infrared Small Target Label Generation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 8125–8137. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Xu, G.; Cao, H.; Dong, Y.; Yue, C.; Zou, Y. Stochastic Gradient Descent with Step Cosine Warm Restarts for Pathological Lymph Node Image Classification via PET/CT Images. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020; pp. 490–493. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
Model | Module | DAUB | NUDT(All) | ||||||
---|---|---|---|---|---|---|---|---|---|
3D Max-Pooling | Intra-Frame Encoding | Inter-Frame Encoding | Pd/% | Fa/10−6 | FaT/% | Pd/% | Fa/10−6 | FaT/% | |
A | √ | 94.71 | 8.13 | 19.20 | 96.01 | 27.17 | 13.62 | ||
B | √ | √ | 96.37 | 4.99 | 10.22 | 97.39 | 18.16 | 9.01 | |
C | √ | √ | 95.56 | 3.08 | 5.21 | 96.82 | 10.34 | 7.35 | |
D | √ | √ | √ | 98.28 | 1.88 | 5.01 | 98.21 | 8.56 | 6.19 |
Model | Module | DAUB | NUDT(All) | ||||
---|---|---|---|---|---|---|---|
Pd/% | Fa/10−6 | FaT/% | Pd/% | Fa/10−6 | FaT/% | ||
A | ResBlock and Upsample | 94.62 | 9.28 | 6.48 | 94.39 | 9.28 | 6.48 |
B | w/o Attention Fusion | 97.06 | 8.20 | 6.07 | 96.04 | 8.19 | 6.02 |
C | Complete module | 98.28 | 1.88 | 5.01 | 98.21 | 8.56 | 6.19 |
Layers | DAUB | NUDT | Resource | |||||
---|---|---|---|---|---|---|---|---|
Pd/% | FaT/% | Pd/% | FaT/% | Params/M | Flops/G | |||
3 | 93.71 | 4.94 | 11.07 | 97.69 | 8.57 | 9.31 | 3.883 | 62.448 |
4 | 98.28 | 1.88 | 5.01 | 98.21 | 8.56 | 6.19 | 4.458 | 64.131 |
5 | 96.99 | 3.82 | 5.44 | 98.50 | 7.63 | 6.48 | 6.754 | 65.812 |
Frames | DAUB | NUDT | Resource | |||||
---|---|---|---|---|---|---|---|---|
Pd/% | FaT/% | Pd/% | FaT/% | Params/M | Flops/G | |||
3 | 92.71 | 8.13 | 12.21 | 91.02 | 21.73 | 19.61 | 4.153 | 37.317 |
5 | 98.28 | 1.88 | 5.01 | 98.21 | 8.56 | 6.19 | 4.458 | 64.131 |
7 | 98.84 | 1.81 | 5.38 | 98.07 | 8.03 | 6.47 | 4.763 | 92.848 |
DAUB | Resource and Speed | ||||||
---|---|---|---|---|---|---|---|
Pd/% | Fa/10−6 | FaT/% | Params/M | Flops/G | FPS | ||
Single Frame | ResUNet [52] | 85.70 | 25.48 | 20.45 | 0.914 | 2.589 | 79.9 |
DNANet [14] | 92.15 | 14.35 | 21.63 | 1.134 | 7.795 | 37.6 | |
UIUNet [13] | 86.54 | 7.85 | 16.18 | 50.541 | 54.501 | 32.7 | |
MSHNet [17] | 87.29 | 24.77 | 32.74 | 4.065 | 6.065 | 45.1 | |
Multi Frame | DTUM [33] | 95.86 | 6.01 | 10.31 | 0.298 | 15.351 | 24.4 |
SST [40] | 89.76 | \ | 5.05 | 11.418 | 43.242 | 21.8 | |
RFR [42] | 92.16 | 8.79 | 19.43 | 1.206 | 14.719 | 40.2 | |
DEMNet | 98.28 | 1.88 | 5.01 | 4.458 | 64.131 * | 14.8 |
NUDT(SNR ≤ 3) | NUDT(3 < SNR < 10) | NUDT(All) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pd/% | Fa/10−6 | FaT/% | Pd/% | Fa/10−6 | FaT/% | Pd/% | Fa/10−6 | FaT/% | ||
Single Frame | ResUNet [52] | 17.58 | 506.95 | 246.13 | 81.33 | 472.12 | 116.67 | 61.48 | 485.97 | 155.87 |
DNANet [14] | 19.28 | 441.42 | 227.60 | 89.83 | 123.56 | 35.83 | 68.25 | 249.91 | 94.51 | |
UIUNet [13] | 28.36 | 195.82 | 106.62 | 82.67 | 62.81 | 28.47 | 66.05 | 115.69 | 52.17 | |
MSHNet [17] | 4.537 | 441.44 | 175.61 | 86.00 | 66.63 | 29.75 | 61.08 | 215.65 | 74.38 | |
Multi Frame | DTUM [33] | 90.74 | 9.22 | 14.18 | 99.08 | 9.23 | 3.33 | 96.53 | 9.23 | 6.65 |
SST [40] | 51.04 | \ | 32.9 | 80.75 | \ | 26.33 | 71.66 | \ | 28.34 | |
RFR [42] | 39.41 | 60.907 | 39.779 | 90.42 | 106.28 | 41.50 | 74.527 | 88.240 | 40.96 | |
DEMNet | 96.41 | 6.77 | 11.72 | 99.00 | 9.74 | 3.75 | 98.21 | 8.56 | 6.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Zhang, Q.; Li, Y.; Wang, T. DEMNet: Dual Encoder–Decoder Multi-Frame Infrared Small Target Detection Network with Motion Encoding. Remote Sens. 2025, 17, 2963. https://doi.org/10.3390/rs17172963
He F, Zhang Q, Li Y, Wang T. DEMNet: Dual Encoder–Decoder Multi-Frame Infrared Small Target Detection Network with Motion Encoding. Remote Sensing. 2025; 17(17):2963. https://doi.org/10.3390/rs17172963
Chicago/Turabian StyleHe, Feng, Qiran Zhang, Yichuan Li, and Tianci Wang. 2025. "DEMNet: Dual Encoder–Decoder Multi-Frame Infrared Small Target Detection Network with Motion Encoding" Remote Sensing 17, no. 17: 2963. https://doi.org/10.3390/rs17172963
APA StyleHe, F., Zhang, Q., Li, Y., & Wang, T. (2025). DEMNet: Dual Encoder–Decoder Multi-Frame Infrared Small Target Detection Network with Motion Encoding. Remote Sensing, 17(17), 2963. https://doi.org/10.3390/rs17172963