Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm
Abstract
1. Introduction
2. Study Area, Datasets, and Methods
2.1. Study Area
2.2. Datasets
2.2.1. SAR Images
2.2.2. Sea Level Rise Under Different Scenarios
2.2.3. Digital Elevation Model
2.2.4. In-Situ Observations
2.3. Methods
2.3.1. Time-Series InSAR (TS-InSAR) Analysis
2.3.2. Relative Sea Level Rise-Driven Inundation Mapping Under Different Scenarios
3. Results
3.1. Land Deformation Results from TS-InSAR
3.1.1. Validation of TS-InSAR Results with Benchmark and Extensometer
3.1.2. Spatial and Temporal Characteristics of Land Subsidence in YRD
3.2. Coastal Inundation Simulation Under Different Scenarios
4. Discussion
4.1. Differences in the Causes of Land Subsidence
4.2. Response of Deformation to Groundwater Level Variations in Corresponding Aquifers
4.3. The Impact of Land Subsidence on RSL Rise
4.4. Coastal Inundation Risk and Countermeasures
5. Conclusions
- Multiple subsidence bowls are observed in both inland and coastal zones, with a maximum deformation rate of −232.8 mm/yr. Inland subsidence (BX–GR) is primarily driven by deep groundwater extraction, while coastal subsidence (HK–KL–GR) is linked to shallow brine extraction. Typhoon Lekima disrupted brine extraction and recharged groundwater via heavy rainfall, resulting in temporary rebound in coastal areas.
- The main subsidence layers are located at depths of 140–260 m in BX and 260–400 m in GR. Persistent deep groundwater extraction has caused long-term residual deformation, especially in GR. With declining mineralization of coastal aquifers due to brine extraction, future pumping is expected to shift to greater depths, potentially increasing residual deformation and underestimating long-term subsidence risk.
- CoastalDEM v2.1 exhibits higher elevation accuracy compared to SRTM, which improves the reliability of seawater inundation analysis. The active inundation algorithm reveals that land subsidence, rather than ASL rise (e.g., SSP5-8.5), is the dominant driver of future coastal inundation. Under current subsidence and ASL rise trends, 12.84% of the land and 8.74% of built-up areas may be inundated by 2100. Mitigating subsidence particularly by regulating shallow brine extraction can significantly reduce inundation risk.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reimann, L.; Vafeidis, A.T.; Honsel, L.E. Population development as a driver of coastal risk: Current trends and future pathways. Camb. Prism. Coast. Futures 2023, 1, e14. [Google Scholar] [CrossRef]
- Hakim, W.L.; Fadhillah, M.F.; Park, S.; Pradhan, B.; Won, J.-S.; Lee, C.-W. InSAR time-series analysis and susceptibility mapping for land subsidence in Semarang, Indonesia using convolutional neural network and support vector regression. Remote Sens. Environ. 2023, 287, 113453. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.-L.; Fang, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Bott, L.-M.; Schöne, T.; Illigner, J.; Haghshenas Haghighi, M.; Gisevius, K.; Braun, B. Land subsidence in Jakarta and Semarang Bay—The relationship between physical processes, risk perception, and household adaptation. Ocean Coast. Manag. 2021, 211, 105775. [Google Scholar] [CrossRef]
- Younas, M.; Khan, S.D.; Tirmizi, O.; Hamed, Y. Geospatial analytics of driving mechanism of land subsidence in Gulf Coast of Texas, United States. Sci. Total Environ. 2023, 902, 166102. [Google Scholar] [CrossRef]
- Yastika, P.; Shimizu, N.; Abidin, H. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv. Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Moe, I.R.; Kure, S.; Januriyadi, N.F.; Farid, M.; Udo, K.; Kazama, S.; Koshimura, S. Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrol. Res. Lett. 2017, 11, 99–105. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Kim, J.; Turco, M.J. Mapping and characterizing land deformation during 2007–2011 over the Gulf Coast by L-band InSAR. Remote Sens. Environ. 2023, 284, 113342. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fasullo, J.; Galloway, D.L. Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Sci. Rep. 2020, 10, 17905. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Q.; Xu, H.; Wang, J. Modelling the combined impact of sea level rise, land subsidence, and tropical cyclones in compound flooding of coastal cities. Ocean Coast. Manag. 2024, 252, 107107. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Miller, M.M.; Jones, C.E.; Sangha, S.S.; Bekaert, D.P. Rapid drought-induced land subsidence and its impact on the California aqueduct. Remote Sens. Environ. 2020, 251, 112063. [Google Scholar] [CrossRef]
- Tang, Z.; Ning, R.; Wang, D.; Tian, X.; Bi, X.; Ning, J.; Zhou, Z.; Luo, F. Projections of land use/cover change and habitat quality in the model area of Yellow River delta by coupling land subsidence and sea level rise. Ecol. Indic. 2024, 158, 111394. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Liang, C.; Wang, H. Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103077. [Google Scholar] [CrossRef]
- Wang, X.; Feng, A.; Hou, X.; Chao, Q.; Song, B.; Liu, Y.; Wang, Q.; Xu, H.; Zhang, Y.; Li, D.; et al. Compound extreme inundation risk of coastal wetlands caused by climate change and anthropogenic activities in the Yellow River Delta, China. Adv. Clim. Chang. Res. 2024, 15, 134–147. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, R.; Deng, Y.; Ma, P.; Lin, H.; Wang, J. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS-J. Photogramm. Remote Sens. 2019, 148, 157–173. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xia, X.; Bi, H.; Huang, H.; Ding, R.; Zhao, L. Land subsidence of the Yellow River Delta in China driven by river sediment compaction. Sci. Total Environ. 2021, 750, 142165. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef]
- Guérou, A.; Meyssignac, B.; Prandi, P.; Ablain, M.; Ribes, A.; Bignalet-Cazalet, F. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty. Ocean Sci. 2023, 19, 431–451. [Google Scholar] [CrossRef]
- Garner, G.G.; Hermans, T.; Kopp, R.E.; Slangen, A.B.A.; Edwards, T.L.; Levermann, A.; Nowikci, S.; Palmer, M.D.; Smith, C.; Fox-Kemper, B.; et al. IPCC AR6 Sea Level Projections, Version 20210809; Zenodo: Geneva, Switzerland, 2021. [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [PubMed]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- García-Lanchares, C.; Fernández-Landa, A.; Armayor, J.L.; Hernández-Rubio, O.; Marchamalo-Sacristán, M. The Influence of Groundwater Management on Land Subsidence Patterns in the Metropolitan Region of Guatemala City: A Multi-Temporal InSAR Analysis. Remote Sens. 2025, 17, 1496. [Google Scholar] [CrossRef]
- Teatini, P.; Strozzi, T.; Tosi, L.; Wegmüller, U.; Werner, C.; Carbognin, L. Assessing short- and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. J. Geophys. Res. 2007, 112, F01012. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaikōura earthquake from InSAR time series with atmospheric corrections. Remote Sens. Environ. 2020, 251, 112097. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; He, X. Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102289. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; Hanssen, R.; Rocca, F. Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sens. 2020, 12, 1364. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wu, H.; Lu, Z.; Sun, G. Monitoring of urban subsidence with SAR interferometric point target analysis: A case study in Suzhou, China. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 812–818. [Google Scholar] [CrossRef]
- Brouwer, W.S.; Hanssen, R.F. Estimating three-dimensional displacements with InSAR: The strapdown approach. J. Geod. 2024, 98, 110. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, G.; Yu, X.; Xiao, G.; Ding, X.; Zhao, R.; Gan, W. Establishment and Application of Stable North China Reference Frame: NChina20. Earthq. Res. China 2020, 36, 788–805. [Google Scholar]
- Dawson, R.; Hall, J.; Sayers, P.; Bates, P.; Rosu, C. Sampling-based flood risk analysis for fluvial dike systems. Stoch. Environ. Res. Risk Assess. 2005, 19, 388–402. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, S.; Sun, X.; Di, S.; Ding, P. Correlation between groundwater exploitation and land subsidence in northwest plain of Shandong province. China Sci. 2021, 16, 173–180. [Google Scholar]
- Feng, S.; Tan, X.; Liu, G. Potentiality analysis on underground brine resources in Shandong Province. Shandong Land Resour. 2013, 29, 69–73. [Google Scholar]
- Yang, X.; Yao, Y.; Jia, C.; Yang, T. Spatiotemporal prediction of land subsidence and its response patterns to different aquifers in coastal areas. Ocean Coast. Manag. 2024, 253, 107148. [Google Scholar] [CrossRef]
- Yao, Y.; Yuan, F. Present condition of shallow brine resource exploitation and analysis on mining potentiality in Dongying City. Shandong Land Resour. 2013, 29, 37–40. [Google Scholar]
- Zou, Z.; Zhang, D.; Tan, Z. Ground brine resource and its exploitation in Shandong Province. Geol. Surv. Res. 2008, 3, 214–221. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z. Study on the correlation between brine mining and ground settlement in Guangrao Salt Field. Constr. Des. Eng. 2022, 17, 207–210. [Google Scholar] [CrossRef]
- Lin, C.; Yao, Y.; Fu, J. Potentiality evaluation of brine resources exploitation in efficient ecological economic zone of the Yellow River Delta. Shandong Land Resour. 2014, 30, 48–52. [Google Scholar]
- Di, S.; Jia, C.; Zhang, S.; Ding, P.; Shao, M.; Zhang, Y. Regional characteristics and evolutionary trend prediction of land subsidence caused by groundwater over-exploitation in North Shandong of the North China Plain. Acta Geol. Sin. 2020, 94, 1638–1654. [Google Scholar] [CrossRef]
- Navarro, A.M.G.; Eid, C.; Rocca, V.; Benetatos, C.; De Luca, C.; Onorato, G.; Lanari, R. Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach. Remote Sens. 2025, 17, 2645. [Google Scholar] [CrossRef]
- Lei, T.; Ma, Q.; Ge, W.; Xing, H.; Li, Y. Full section multi-parameter precise monitoring of fiber optic in land subsidence borehole: A case study of Shanmozhi Village, Xiaoshan District of Hangzhou. East China Geol. 2024, 45, 452–465. [Google Scholar] [CrossRef]
- Meng, D.; Chen, B.; Gong, H.; Zhang, S.; Ma, R.; Zhou, C.; Lei, K.; Xu, L.; Wang, X. Land subsidence and rebound response to groundwater recovery in the Beijing Plain: A new hydrological perspective. J. Hydrol. Reg. Stud. 2025, 57, 102127. [Google Scholar] [CrossRef]
- Bi, N.; Shi, Y.; Ge, C.; Ba, Q.; Wu, X.; Wang, H. Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation. Mar. Geol. Quat. Geol. 2024, 44, 1–14. [Google Scholar] [CrossRef]
- Luo, F.; Wang, D.; Tian, X.; Bi, X.; Zheng, Q.; Zhou, Z.; Tang, Z. Estuarine groundwater level response to and recovery from extreme precipitation events: Typhoon Lekima in the Yellow River Delta. J. Hydrol. 2024, 632, 130918. [Google Scholar] [CrossRef]
- He, L.; Chen, S.; Guo, Y. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J. Appl. Meteor. Sci. 2020, 31, 513–526. [Google Scholar] [CrossRef]
- Hoshino, S.; Esteban, M.; Mikami, T.; Takagi, H.; Shibayama, T. Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area. Nat. Hazards 2016, 80, 539–565. [Google Scholar] [CrossRef]
- Sharaan, M.; Iskander, M.; Udo, K. Coastal adaptation to sea level rise: An overview of Egypt’s efforts. Ocean Coast. Manag. 2022, 218, 106024. [Google Scholar] [CrossRef]
Path | Frame | Flight Direction | Polarization | Range Resolution | Azimuth Resolution | Nr. |
---|---|---|---|---|---|---|
69 | 109 | Ascending | VV | 2.7~3.5 m | 22 m | 196 |
69 | 114 | Ascending | VV | 2.7~3.5 m | 22 m | 196 |
Scenarios (Sea Level & Deformation Rate) | Years | Inundation Area (km2) | Inundation Area (km2) and Percentage in YRD | Build-Up Area Inundation Percentage in YRD |
---|---|---|---|---|
ASLcurrent&LS0% | 2030 | 205.42 | 127.9 (2.60%) | 2.33% |
2050 | 210.22 | 131.5 (2.67%) | 2.39% | |
2100 | 485.12 | 162.8 (3.31%) | 3.15% | |
ASLcurrent&LS25% | 2030 | 479.75 | 188.0 (3.82%) | 2.74% |
2050 | 551.35 | 233.5 (4.75%) | 3.10% | |
2100 | 1014.67 | 320.7 (6.52%) | 4.48% | |
ASLcurrent&LS50% | 2030 | 558.05 | 238.8 (4.85%) | 4.85% |
2050 | 949.15 | 302.4 (6.15%) | 6.15% | |
2100 | 1280.90 | 387.9 (7.88%) | 7.88% | |
ASLcurrent&LS100% | 2030 | 975.13 | 309.9 (6.30%) | 4.22% |
2050 | 1223.54 | 368.8 (7.50%) | 5.10% | |
2100 | 2179.87 | 631.8 (12.84%) | 8.74% | |
ASLSSP1-1.9&LS100% | 2030 | 987.66 | 314.2 (6.39%) | 4.27% |
2050 | 1220.20 | 367.3 (7.47%) | 5.07% | |
2100 | 2150.76 | 619.4 (12.59%) | 8.49% | |
ASLSSP1-2.6&LS100% | 2030 | 975.37 | 310.0 (6.30%) | 4.22% |
2050 | 1222.55 | 368.4 (7.49%) | 5.09% | |
2100 | 2179.86 | 631.8 (12.84%) | 8.74% | |
ASLSSP2-4.5&LS100% | 2030 | 975.60 | 310.1 (6.30%) | 4.22% |
2050 | 1226.88 | 370.1 (7.52%) | 5.13% | |
2100 | 2234.13 | 649.7 (13.20%) | 9.09% | |
ASLSSP3-7.0&LS100% | 2030 | 975.82 | 310.2 (6.31%) | 4.22% |
2050 | 1229.31 | 370.2 (7.54%) | 5.16% | |
2100 | 2294.93 | 674.2 (13.70%) | 9.63% | |
ASLSSP5-8.5&LS100% | 2030 | 975.99 | 310.3 (6.31%) | 4.23% |
2050 | 1237.03 | 373.4 (7.59%) | 5.24% | |
2100 | 2385.02 | 694.8 (14.12%) | 10.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, B.; Gong, H.; Meng, D.; Wang, X.; Zhou, C.; Lei, K.; Wang, H.; Kang, F.; Yang, Y. Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm. Remote Sens. 2025, 17, 2942. https://doi.org/10.3390/rs17172942
Zhang S, Chen B, Gong H, Meng D, Wang X, Zhou C, Lei K, Wang H, Kang F, Yang Y. Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm. Remote Sensing. 2025; 17(17):2942. https://doi.org/10.3390/rs17172942
Chicago/Turabian StyleZhang, Shubo, Beibei Chen, Huili Gong, Dexin Meng, Xincheng Wang, Chaofan Zhou, Kunchao Lei, Haigang Wang, Fengxin Kang, and Yabin Yang. 2025. "Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm" Remote Sensing 17, no. 17: 2942. https://doi.org/10.3390/rs17172942
APA StyleZhang, S., Chen, B., Gong, H., Meng, D., Wang, X., Zhou, C., Lei, K., Wang, H., Kang, F., & Yang, Y. (2025). Assessing Subsidence and Coastal Inundation in the Yellow River Delta Using TS-InSAR and Active Inundation Algorithm. Remote Sensing, 17(17), 2942. https://doi.org/10.3390/rs17172942