Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collecting
2.2.1. UAV Imagery Capture and Pre-Processing
2.2.2. Ground Reference Data
2.3. Data Processing Approaches
2.3.1. Object-Based Analyzing Image Segmentation
2.3.2. Deep Learning Algorithms
2.3.3. Driving Factor Analysis Using Feature Correlation and SHAP
2.3.4. Accuracy Assessment
3. Results
3.1. Classification Results and Model Accuracy
3.2. Feature Importance Based on SHAP
4. Discussion
4.1. Model Selection Considerations
4.2. Topography and Phenology Comparisons
4.2.1. The Influence of Topography on Classification
4.2.2. The Influence of Phenologyon Classification
4.3. Feature Determination
4.4. Implications of Findings
5. Conclusions
- (1)
- ConvNeXt and ResNet delivered superior vegetation classification performance in subtropical peatlands. ConvNeXt achieved optimal results through its large-kernel architecture and vision-optimized design, while ResNet served as an effective alternative when sufficient computational resources were available during growing seasons. Although EfficientNet and Swin Transformer attained high training accuracy with low loss on validation sets, their low F1-scores and poor overall accuracy indicate limited suitability for subtropical peatland vegetation classification.
- (2)
- Topography and phenology are both important factors that affect classification accuracy. Topography-derived hydrological gradients serve as the core driver. The high depth of the water table in low-lying YLC areas intensifies spectral confusion among vegetation, reducing accuracy by 12–15% compared to LK3. Phenological variations regulate classification outcomes through vegetation growth dynamics: during non-growing seasons, the withering of annual plants enhances inter-category feature distinctness, whereas in growing seasons, the morphological traits of dicot plants become more recognizable with DSM assistance, though spectral overlap between monocots and Sphagnum moss increases misclassification rates. Consequently, Sphagnum mapping should prioritize non-growing season imagery, while dicot vegetation classification requires integrated growing-season data and DSM features.
- (3)
- The SHAP method effectively identifies critical features including key vegetation indices like EXG, EXR, EXGR, DSM, and texture characteristics, clarifying how DL models utilize these inputs. Comparative experiments with different input data configurations demonstrate that DSM contributes substantially to vegetation classification, underscoring the indispensability of topographic elevation data.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
OBIA | object-based image analysis |
RF | random forest |
DL | deep learning |
RGB | red–green–blue |
DOM | digital orthophoto map |
CNN | convolutional neural network |
OA | overall accuracy |
PA | producer accuracy |
UA | user accuracy |
EXGR | excessive green index minus red index |
EXR | excess red index |
EXG | excess green index |
DSM | digital surface model |
Dicots | dicotyledonous vegetation |
Monocots | monocotyledonous vegetation |
SHAP | SHapley Additive exPlanations |
References
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global Peatland Dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, 13. [Google Scholar] [CrossRef]
- Strack, M.; Davidson, S.J.; Hirano, T.; Dunn, C. The Potential of Peatlands as Nature-Based Climate Solutions. Curr. Clim. Change Rep. 2022, 8, 71–82. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Münchberger, W.; Knoth, C.; Blodau, C.; Nieberding, F.; Prinz, T.; Pancotto, V.A.; Kleinebecker, T. High-Resolution Classification of South Patagonian Peat Bog Microforms Reveals Potential Gaps in up-Scaled CH4 Fluxes by Use of Unmanned Aerial System (UAS) and CIR Imagery. Remote Sens. 2016, 8, 173. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Z.; Ling, Z.; Deng, Y. Experience and Future Research Trends of Wetland Protection and Restoration in China. J. Geogr. Sci. 2024, 34, 229–251. [Google Scholar] [CrossRef]
- Ritson, J.P.; Lees, K.J.; Hill, J.; Gallego-Sala, A.; Bebber, D.P. Climate Change Impacts on Blanket Peatland in Great Britain. J. Appl. Ecol. 2025, 62, 701–714. [Google Scholar] [CrossRef]
- Karlqvist, S.; Burdun, I.; Salko, S.-S.; Juola, J.; Rautiainen, M. Retrieval of Moisture Content of Common Sphagnum Peat Moss Species from Hyperspectral and Multispectral Data. Remote Sens. Environ. 2024, 315, 114415. [Google Scholar] [CrossRef]
- Rochefort, L. Sphagnum: A Keystone Genus in Habitat Restoration. Bryologist 2000, 103, 503–508. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Li, X.; Ma, L.; Zhai, G.; Feng, X. Sphagnum Increases Soil’s Sequestration Capacity of Mineral-Associated Organic Carbon via Activating Metal Oxides. Nat. Commun. 2023, 14, 5052. [Google Scholar] [CrossRef]
- Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned Aerial Vehicles as Innovative Remote Sensing Platforms for High-Resolution Infrared Imagery to Support Restoration Monitoring in Cut-over Bogs. Appl. Veg. Sci. 2013, 16, 509–517. [Google Scholar] [CrossRef]
- Andersen, R.; Poulin, M.; Borcard, D.; Laiho, R.; Laine, J.; Vasander, H.; Tuittila, E.-T. Environmental Control and Spatial Structures in Peatland Vegetation. J. Veg. Sci. 2011, 22, 878–890. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight Unmanned Aerial Vehicles Will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Steenvoorden, J.; Bartholomeus, H.; Limpens, J. Less Is More: Optimizing Vegetation Mapping in Peatlands Using Unmanned Aerial Vehicles (UAVs). Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103220. [Google Scholar] [CrossRef]
- Middleton, M.; Närhi, P.; Arkimaa, H.; Hyvönen, E.; Kuosmanen, V.; Treitz, P.; Sutinen, R. Ordination and Hyperspectral Remote Sensing Approach to Classify Peatland Biotopes along Soil Moisture and Fertility Gradients. Remote Sens. Environ. 2012, 124, 596–609. [Google Scholar] [CrossRef]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Tuittila, E.; Aurela, M.; Virtanen, T. Comparing Ultra-High Spatial Resolution Remote-Sensing Methods in Mapping Peatland Vegetation. J. Veg. Sci. 2019, 30, 1016–1026. [Google Scholar] [CrossRef]
- Treat, C.C.; Bloom, A.A.; Marushchak, M.E. Nongrowing Season Methane Emissions—A Significant Component of Annual Emissions across Northern Ecosystems. Glob. Change Biol. 2018, 24, 3331–3343. [Google Scholar] [CrossRef]
- Bertacchi, A.; Giannini, V.; Di Franco, C.; Silvestri, N. Using Unmanned Aerial Vehicles for Vegetation Mapping and Identification of Botanical Species in Wetlands. Landsc. Ecol. Eng. 2019, 15, 231–240. [Google Scholar] [CrossRef]
- Kameoka, T.; Kozan, O.; Hadi, S.; Asnawi; Hasrullah. Monitoring the Groundwater Level in Tropical Peatland through UAV Mapping of Soil Surface Temperature: A Pilot Study in Tanjung Leban, Indonesia. Remote Sens. Lett. 2021, 12, 542–552. [Google Scholar] [CrossRef]
- Kelly, M.; Tuxen, K.A.; Stralberg, D. Mapping Changes to Vegetation Pattern in a Restoring Wetland: Finding Pattern Metrics That Are Consistent across Spatial Scale and Time. Ecol. Indic. 2011, 11, 263–273. [Google Scholar] [CrossRef]
- Diaz-Varela, R.A.; Calvo Iglesias, S.; Cillero Castro, C.; Diaz Varela, E.R. Sub-Metric Analisis of Vegetation Structure in Bog-Heathland Mosaics Using Very High Resolution Rpas Imagery. Ecol. Indic. 2018, 89, 861–873. [Google Scholar] [CrossRef]
- Räsänen, A.; Virtanen, T. Data and Resolution Requirements in Mapping Vegetation in Spatially Heterogeneous Landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing Object-Based and Pixel-Based Classifications for Mapping Savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Kaneko, K.; Yokochi, M.; Inoue, T.; Kato, Y.; Fujita, H. Topographic Conditions as Governing Factors of Mire Vegetation Types Analyzed from Drone-Based Terrain Model. J. Veg. Sci. 2024, 35, e13226. [Google Scholar] [CrossRef]
- Simpson, G.; Nichol, C.J.; Wade, T.; Helfter, C.; Hamilton, A.; Gibson-Poole, S. Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery. Drones 2024, 8, 97. [Google Scholar] [CrossRef]
- Pang, Y.; Räsänen, A.; Wolff, F.; Tahvanainen, T.; Männikkö, M.; Aurela, M.; Korpelainen, P.; Kumpula, T.; Virtanen, T. Comparing Multispectral and Hyperspectral UAV Data for Detecting Peatland Vegetation Patterns. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104043. [Google Scholar] [CrossRef]
- Ai, J.; Han, X.; Chen, L.; He, H.; Li, X.; Tan, Y.; Xie, T.; Tang, X. Deep Neural Network and Transfer Learning for Annual Wetland Vegetation Mapping Using Sentinel-2 Time-Series Data in the Heterogeneous Lake Floodplain Environment. Int. J. Remote Sens. 2024, 18, 1–24. [Google Scholar] [CrossRef]
- Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3030–3039. [Google Scholar] [CrossRef]
- Tao, R.; Zhao, X.; Li, W.; Li, H.-C.; Du, Q. Hyperspectral Anomaly Detection by Fractional Fourier Entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4920–4929. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, Q.; Sun, L.; Wu, Z.; Pan, C.; Jeon, B. Joint Classification of Hyperspectral and LiDAR Data Using a Hierarchical CNN and Transformer. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Xu, F.; Hu, C.; Li, J.; Plaza, A.; Datcu, M. Special Focus on Deep Learning in Remote Sensing Image Processing. Sci. China Inf. Sci. 2020, 63, 140300. [Google Scholar] [CrossRef]
- Hou, X.; Ao, W.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a High-Resolution SAR-AIS Matchup Dataset of Gaofen-3 for Ship Detection and Recognition. Sci. China Inf. Sci. 2020, 63, 140303. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Brisco, B.; Mohammadimanesh, F.; Salehi, B. WetNet: A Spatial–Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.W. Wet-GC: A Novel Multimodel Graph Convolutional Approach for Wetland Classification Using Sentinel-1 and 2 Imagery with Limited Training Samples. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5303–5316. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M.; Brisco, B.; Granger, J.; Mohammadimanesh, F.; Salehi, B. Wetland Mapping Using Multi-Spectral Satellite Imagery and Deep Convolutional Neural Networks: A Case Study in Newfoundland and Labrador, Canada. Can. J. Remote Sens. 2021, 47, 243–260. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Q.; Guo, F.; Wang, L.; Huang, W.; Hu, Y.; Liang, J. Feature-Guided Dynamic Graph Convolutional Network for Wetland Hyperspectral Image Classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103485. [Google Scholar] [CrossRef]
- Nikolova, P.D.; Evstatiev, B.I.; Atanasov, A.Z.; Atanasov, A.I. Evaluation of Weed Infestations in Row Crops Using Aerial RGB Imaging and Deep Learning. Agriculture 2025, 15, 418. [Google Scholar] [CrossRef]
- Song, H. A More Efficient Approach for Remote Sensing Image Classification. Comput. Mater. Contin. 2022, 74, 5741–5756. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M. Swin Transformer and Deep Convolutional Neural Networks for Coastal Wetland Classification Using Sentinel-1, Sentinel-2, and LiDAR Data. Remote Sens. 2022, 14, 359. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, X.; Gao, Y.; Zhang, Y.; Lin, G. Tree Species Classification in UAV Remote Sensing Images Based on Super-Resolution Reconstruction and Deep Learning. Remote Sens. 2023, 15, 2942. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.; Huang, X. Fluctuations of Water Table Level in a Subtropical Peatland, Central China. J. Earth Sci. 2025, 36, 441–449. [Google Scholar] [CrossRef]
- Yang, S.; Ge, J.; Xu, X.; Liu, Z.; Wang, J.; Wang, Y. Regulation Mechanisms of CO2 Fluxes in Subtropical Mountain Peatlands Based on Long-Term In Situ Observations at the Dajiuhu Peatland. J. Geophys. Res. Biogeosci. 2025, 130, e2024JG008328. [Google Scholar] [CrossRef]
- Chabot, D.; Dillon, C.; Shemrock, A.; Weissflog, N.; Sager, E.P.S. An Object-Based Image Analysis Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 294. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Witharana, C.; Civco, D.L. Optimizing Multi-Resolution Segmentation Scale Using Empirical Methods: Exploring the Sensitivity of the Supervised Discrepancy Measure Euclidean Distance 2 (ED2). ISPRS J. Photogramm. Remote Sens. 2014, 87, 108–121. [Google Scholar] [CrossRef]
- Dragut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Alhichri, H.; Alswayed, A.S.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of Remote Sensing Images Using EfficientNet-B3 CNN Model with Attention. IEEE Access 2021, 9, 14078–14094. [Google Scholar] [CrossRef]
- Roy, S.K.; Manna, S.; Song, T.; Bruzzone, L. Attention-Based Adaptive Spectral—Spatial Kernel ResNet for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7831–7843. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408715. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing Fully Convolutional Networks, Random Forest, Support Vector Machine, and Patch-Based Deep Convolutional Neural Networks for Object-Based Wetland Mapping Using Images from Small Unmanned Aircraft System. GIScience Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Yang, G.; Zhang, J.; Gong, C.; Wang, Y. CSNet: A ConvNeXt-Based Siamese Network for RGB-D Salient Object Detection. Vis. Comput. 2024, 40, 1805–1823. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Ghosh, B. Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sens. 2020, 12, 2602. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for N-Person Games. In Contributions to the Theory of Games II; Kuhn, H., Tucker, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Volume 30, pp. 4765–4774. [Google Scholar] [CrossRef]
- Torabzadeh, H.; Leiterer, R.; Hueni, A.; Schaepman, M.E.; Morsdorf, F. Tree Species Classification in a Temperate Mixed Forest Using a Combination of Imaging Spectroscopy and Airborne Laser Scanning. Agric. For. Meteorol. 2019, 279, 107744. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep Learning Based Multi-Temporal Crop Classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M. Swin Transformer for Complex Coastal Wetland Classification Using the Integration of Sentinel-1 and Sentinel-2 Imagery. Water 2022, 14, 178. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote Sensing of Plant Functional Types. New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef]
- Pang, Y.; Räsänen, A.; Lindholm, V.; Aurela, M.; Virtanen, T. Detecting Peatland Vegetation Patterns with Multi-Temporal Field Spectroscopy. GIScience Remote Sens. 2022, 59, 2111–2126. [Google Scholar] [CrossRef]
- Räsänen, A.; Aurela, M.; Juutinen, S.; Kumpula, T.; Lohila, A.; Penttilä, T.; Virtanen, T. Detecting Northern Peatland Vegetation Patterns at Ultra-High Spatial Resolution. Remote Sens. Ecol. Conserv. 2020, 6, 457–471. [Google Scholar] [CrossRef]
- Isoaho, A.; Elo, M.; Marttila, H.; Rana, P.; Lensu, A.; Räsänen, A. Monitoring Changes in Boreal Peatland Vegetation after Restoration with Optical Satellite Imagery. Sci. Total Environ. 2024, 957, 177697. [Google Scholar] [CrossRef] [PubMed]
- Beyer, F.; Jurasinski, G.; Couwenberg, J.; Grenzdorffer, G. Multisensor Data to Derive Peatland Vegetation Communities Using a Fixed-Wing Unmanned Aerial Vehicle. Int. J. Remote Sens. 2019, 40, 9103–9125. [Google Scholar] [CrossRef]
- Lewiński, S.; Aleksandrowicz, S.; Banaszkiewicz, M. Testing Texture of VHR Panchromatic Data as a Feature of Land Cover Classification. Acta Geophys. 2015, 63, 547–567. [Google Scholar] [CrossRef]
- Wolff, F.; Kolari, T.; Villoslada, M.; Tahvanainen, T.; Korpelainen, P.; Zamboni, P.; Kumpula, T. RGB vs. Multispectral Imagery: Mapping Aapa Mire Plant Communities with UAVs. Ecol. Indic. 2023, 148, 110140. [Google Scholar] [CrossRef]
- Perryman, C.; Mccalley, C.; Malhotra, A.; Fahnestock, M.; Kashi, N.; Bryce, J.; Giesler, R.; Varner, R. Thaw Transitions and Redox Conditions Drive Methane Oxidation in a Permafrost Peatland. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Huang, X. Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping. Remote Sens. 2025, 17, 2920. https://doi.org/10.3390/rs17172920
Liu Z, Huang X. Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping. Remote Sensing. 2025; 17(17):2920. https://doi.org/10.3390/rs17172920
Chicago/Turabian StyleLiu, Zhengshun, and Xianyu Huang. 2025. "Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping" Remote Sensing 17, no. 17: 2920. https://doi.org/10.3390/rs17172920
APA StyleLiu, Z., & Huang, X. (2025). Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping. Remote Sensing, 17(17), 2920. https://doi.org/10.3390/rs17172920