Large-Scale Flood Detection and Mapping in the Yangtze River Basin (2016–2021) Using Convolutional Neural Networks with Sentinel-1 SAR Images
Abstract
1. Introduction
- (1)
- An accurate flood dataset employing a semi-automatic approach with region thresholding and manual interpretation involved was generated.
- (2)
- An efficient CNN model, FloodsNet, that harnesses feature reuse and a spatial pyramid mechanism to enhance flood detection capabilities was proposed.
- (3)
- Inundation detection accuracy under various pre-processing strategies, including polarization, decibel conversion, and DEM adjustment, was systematically assessed.
- (4)
- Flood detections with the FloodsNet in the Yangtze River Basin spanning from 2016 to 2021, and dynamic monitoring for the floods in Dongting Lake in 2017 and Poyang Lake in 2020 were implemented.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
- Data Preprocessing: Prior to employing the threshold method for inundation area extraction, essential preprocessing steps were conducted. The significance and impact of these processes will be elucidated in the subsequent section.
- Flood Dataset Generation: Deep learning methodologies critically depend on the quality and quantity of available datasets. To address this requirement, we introduced a semi-automatic approach that combined the global threshold method with regional thresholding, facilitating the creation of comprehensive flood datasets specific to the YRB.
- CNN Model Development and Flood Detection and Dynamic Monitoring: This study involved a comparative evaluation, contrasting our proposed FloodsNet with a variety of classic CNN models. Subsequently, these models were applied in large-scale flood detection across the Yangtze River Basin, spanning the years 2016 to 2021. Additionally, our investigation encompassed a dynamic flood monitoring aspect, focusing on significant flood-prone regions such as Dongting Lake in 2017 and Poyang Lake in 2020 during their respective flood seasons.
2.3.1. Data Preprocessing
- (1)
- Orbit Correction: This involved updating satellite orbit status information within the metadata file.
- (2)
- Thermal Noise Removal: Our objective was to eliminate noise originating from the SAR satellite system, particularly thermal noise.
- (3)
- Radiometric Calibration: Intensity data underwent systematic conversion into backscatter coefficient data, thereby enhancing the accuracy of our analysis.
- (4)
- Speckle Filtering: A crucial step dedicated to removing random speckle noise arising from radar echoes.
- (5)
- Terrain Corrections: Rectification of distortions induced by factors such as foreshortening, layover, or shadowing effects through the utilization of DEM.
- (6)
- Decibel Conversion: Converting the radar backscatter values from linear scale to dB scale: We performed the decibel conversion using logarithmic functions to enhance visualization and interpretation. The formula is dB = 10 × log10(P), where P is the intensity of radar echo.
2.3.2. Label Annotation and Flood Dataset
2.3.3. The Proposed Deep Learning (DL) Model FloodsNet for Flood Mapping
Atrous Spatial Pyramid Pooling (ASPP)
Skip Connection (SC)
The Cutting-Edge Models Adopted for Comparisons
2.3.4. Evaluation Metrics and Experimental Parameters
3. Experiments and Results
3.1. Ablation Experiments
3.2. Model Comparison Experiments
3.3. Band Comparison Experiments
3.4. Flood Monitoring Results
4. Discussion
4.1. Polarization and DEM
4.2. Dynamic Monitoring of Floods in Typical Areas
4.3. Potential and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC Climate Change 2022—Mitigation of Climate Change—Working Group III; Cambridge University Press: Cambridge, UK, 2022; p. 1454.
- UNISDR; Centre for Research on the Epidemiology of Disaster CRED. The Human Cost of Weather Related Disasters; UNISDR: Geneva, Switzerland; CRED: Brussels, Belgium, 2015; Volume 12, pp. 1–17. [Google Scholar]
- Chen, Y.; Syvitski, J.P.M.; Gao, S.; Overeem, I.; Kettner, A.J. Socio-Economic Impacts on Flooding: A 4000-Year History of the Yellow River, China. Ambio 2012, 41, 682–698. [Google Scholar] [CrossRef]
- Wang, M.J.; Zheng, H.B.; Xie, X.; Fan, D.D.; Yang, S.Y.; Zhao, Q.H.; Wang, K. A 600-Year Flood History in the Yangtze River Drainage: Comparison Between a Subaqueous Delta and Historical Records. Chin. Sci. Bull. 2011, 56, 188–195. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Xiong, S.; Zhang, W.; Tang, J.; Li, Z.; An, B.; Li, R. A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images. Remote Sens. 2023, 15, 2046. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, N.W.; Pan, B.; Ge, X.; Yang, H. Mapping Flood by the Object-Based Method Using Backscattering Coefficient and Interference Coherence of Sentinel-1 Time Series. Sci. Total Environ. 2021, 794, 148388. [Google Scholar] [CrossRef]
- Shen, X.; Anagnostou, E.N.; Allen, G.H.; Robert Brakenridge, G.; Kettner, A.J. Near-Real-Time Non-Obstructed Flood Inundation Mapping Using Synthetic Aperture Radar. Remote Sens. Environ. 2019, 221, 302–315. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of Inundation Changes of Poyang Lake Using MODIS Observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Gianinetto, M.; Villa, P.; Lechi, G. Postflood Damage Evaluation Using Landsat TM and ETM+ Data Integrated with DEM. IEEE Trans. Geosci. Remote Sens. 2006, 44, 236–243. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J. Mapping Spatio-Temporal Flood Inundation Dynamics at Large Riverbasin Scale Using Time-Series Flow Data and MODIS Imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Grimaldi, S.; Xu, J.; Li, Y.; Pauwels, V.R.N.; Walker, J.P. Flood Mapping under Vegetation Using Single SAR Acquisitions. Remote Sens. Environ. 2020, 237, 111582. [Google Scholar] [CrossRef]
- Martinis, S.; Rieke, C. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany. Remote Sens. 2015, 7, 7732–7752. [Google Scholar] [CrossRef]
- McCormack, T.; Campanyà, J.; Naughton, O. A Methodology for Mapping Annual Flood Extent Using Multi-Temporal Sentinel-1 Imagery. Remote Sens. Environ. 2022, 282, 113273. [Google Scholar] [CrossRef]
- Martinez, J.M.; Le Toan, T. Mapping of Flood Dynamics and Spatial Distribution of Vegetation in the Amazon Floodplain Using Multitemporal SAR Data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Zhao, J.; Pelich, R.; Hostache, R.; Matgen, P.; Cao, S.; Wagner, W.; Chini, M. Deriving Exclusion Maps from C-Band SAR Time-Series in Support of Floodwater Mapping. Remote Sens. Environ. 2021, 265, 112668. [Google Scholar] [CrossRef]
- Cohen, J.; Riihimäki, H.; Pulliainen, J.; Lemmetyinen, J.; Heilimo, J. Implications of Boreal Forest Stand Characteristics for X-Band SAR Flood Mapping Accuracy. Remote Sens. Environ. 2016, 186, 47–63. [Google Scholar] [CrossRef]
- Dasgupta, A.; Grimaldi, S.; Ramsankaran, R.A.A.J.; Pauwels, V.R.N.; Walker, J.P. Towards Operational SAR-Based Flood Mapping Using Neuro-Fuzzy Texture-Based Approaches. Remote Sens. Environ. 2018, 215, 313–329. [Google Scholar] [CrossRef]
- Ali, I.; Cao, S.; Naeimi, V.; Paulik, C.; Wagner, W. Methods to Remove the Border Noise from Sentinel-1 Synthetic Aperture Radar Data: Implications and Importance for Time-Series Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 777–786. [Google Scholar] [CrossRef]
- Tiwari, V.; Kumar, V.; Matin, M.A.; Thapa, A.; Ellenburg, W.L.; Gupta, N.; Thapa, S. Flood Inundation Mapping-Kerala 2018; Harnessing the Power of SAR, Automatic Threshold Detection Method and Google Earth Engine. PLoS ONE 2020, 15, e0237324. [Google Scholar] [CrossRef] [PubMed]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for Rapid Flood Mapping: Taking Advantage of EO Big Data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- Lê, T.T.; Froger, J.L.; Ho Tong Minh, D. Multiscale Framework for Rapid Change Analysis from SAR Image Time Series: Case Study of Flood Monitoring in the Central Coast Regions of Vietnam. Remote Sens. Environ. 2022, 269, 112837. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M. Urban Flood Mapping with an Active Self-Learning Convolutional Neural Network Based on TerraSAR-X Intensity and Interferometric Coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [Google Scholar] [CrossRef]
- Mason, D.C.; Speck, R.; Devereux, B.; Schumann, G.J.P.; Neal, J.C.; Bates, P.D. Flood Detection in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 882–894. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A Local Thresholding Approach to Flood Water Delineation Using Sentinel-1 SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T.; Robson, B.A. Monitoring Glacial Lake Outburst Flood Susceptibility Using Sentinel-1 SAR Data, Google Earth Engine, and Persistent Scatterer Interferometry. Remote Sens. Environ. 2022, 271, 112910. [Google Scholar] [CrossRef]
- Boni, G.; Ferraris, L.; Pulvirenti, L.; Squicciarino, G.; Pierdicca, N.; Candela, L.; Pisani, A.R.; Zoffoli, S.; Onori, R.; Proietti, C.; et al. A Prototype System for Flood Monitoring Based on Flood Forecast Combined with COSMO-SkyMed and Sentinel-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2794–2805. [Google Scholar] [CrossRef]
- Nakmuenwai, P.; Yamazaki, F.; Liu, W. Automated Extraction of Inundated Areas from Multi-Temporal Dual-Polarization Radarsat-2 Images of the 2011 Central Thailand Flood. Remote Sens. 2017, 9, 78. [Google Scholar] [CrossRef]
- Qiu, J.; Cao, B.; Park, E.; Yang, X.; Zhang, W.; Tarolli, P. Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. Remote Sens. 2021, 13, 1384. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an Automated SAR-Based Flood Monitoring System: Lessons Learned from Two Case Studies. Phys. Chem. Earth 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood Detection from Multi-Temporal SAR Data Using Harmonic Analysis and Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying Floods and Flood-Affected Paddy Rice Fields in Bangladesh Based on Sentinel-1 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Z.; Zhang, W.; Yi, Y.; Zhang, C.; Xu, Q. A Convolutional Neural Network Based on Grouping Structure for Scene Classification. Remote Sens. 2021, 13, 2457. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide Susceptibility Mapping Using Multiscale Sampling Strategy and Convolutional Neural Network: A Case Study in Jiuzhaigou Region. Catena 2020, 195, 104851. [Google Scholar] [CrossRef]
- Jiang, X.; Liang, S.; He, X.; Ziegler, A.D.; Lin, P.; Pan, M.; Wang, D.; Zou, J.; Hao, D.; Mao, G.; et al. Rapid and Large-Scale Mapping of Flood Inundation via Integrating Spaceborne Synthetic Aperture Radar Imagery with Unsupervised Deep Learning. ISPRS J. Photogramm. Remote Sens. 2021, 178, 36–50. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the Summer Flooding in the Poyang Lake Area of China in 2020 Based on Sentinel-1 Data and Multiple Convolutional Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102400. [Google Scholar] [CrossRef]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A Georeferenced Dataset to Train and Test Deep Learning Flood Algorithms for Sentinel-1. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 835–845. [Google Scholar] [CrossRef]
- Katiyar, V.; Tamkuan, N.; Nagai, M. Near-Real-Time Flood Mapping Using off-the-Shelf Models with Sar Imagery and Deep Learning. Remote Sens. 2021, 13, 2334. [Google Scholar] [CrossRef]
- Konapala, G.; Kumar, S.V.; Khalique Ahmad, S. Exploring Sentinel-1 and Sentinel-2 Diversity for Flood Inundation Mapping Using Deep Learning. ISPRS J. Photogramm. Remote Sens. 2021, 180, 163–173. [Google Scholar] [CrossRef]
- Nemni, E.; Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. Computer U-Net: Convolutional Networks for Biomedical Image Segmentation. Int. Conf. Med. Image Comput. Comput. Interv. 2015, 9, 16591–16603. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network. Remote Sens. 2019, 11, 1774. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-Based Flood Mapping: A Fully Automated Processing Chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Abbasi, M.; Shah-hosseini, R.; Mohammad, A.-N. Sentinel-1 Polarization Comparison for Flood Segmentation Using Deep Learning. Proceedings 2023, 87, 14. [Google Scholar] [CrossRef]
- Uddin, K.; Matin, M.A.; Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sens. 2019, 11, 1581. [Google Scholar] [CrossRef]
- Schlaffer, S.; Chini, M.; Giustarini, L.; Matgen, P. Probabilistic Mapping of Flood-Induced Backscatter Changes in SAR Time Series. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 77–87. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, J. Flood Detection Using Multiple Chinese Satellite Datasets during 2020 China Summer Floods. Remote Sens. 2022, 14, 51. [Google Scholar] [CrossRef]
- Wang, Y.; Colby, J.D.; Mulcahy, K.A. An Efficient Method for Mapping Flood Extent in a Coastal Floodplain Using Landsat TM and DEM Data. Int. J. Remote Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
Flood Events | District | Product ID | Date | Train or Test |
---|---|---|---|---|
1 | Dongting Lake | 011CB0_5A05 | 2016/06/09 | Train and Test |
0127C5_F17D | 2016/07/03 | Train and Test | ||
2 | Poyang Lake | 011822_A928 | 2016/05/30 | Train and Test |
012E7C_86E8 | 2016/07/17 | Train and Test | ||
3 | Middle reaches of the YRB | 011D9A_0801 | 2016/06/11 | Train and Test |
0128B9_886D | 2016/07/05 | Train and Test | ||
4 | Poyang Lake | 00A8F1_7632 | 2017/06/12 | Train and Test |
00B2FB_3091 | 2017/07/06 | Train and Test | ||
5 | Juzhang River | 02747C_139D | 2018/07/05 | Train and Test |
027F52_9A16 | 2018/07/29 | Train and Test | ||
6 | Huaihe River | 02836E_FDCB | 2018/08/07 | Train and Test |
028919_2CEB | 2018/08/19 | Train and Test | ||
7 | Middle reaches of the YRB | 032778_40DE | 2019/07/02 | Train and Test |
032CC4_6DEF | 2019/07/14 | Train and Test | ||
8 | Ruan Jiang | 03E75D_6DAE | 2020/07/30 | Test |
03ED1D_5ADE | 2020/08/11 | Test | ||
9 | Dongting Lake | 01C150_503B | 2017/06/04 | Application |
01D14B_23A9 | 2017/07/10 | Application | ||
10 | Poyang Lake | 029F8B_298B | 2020/06/20 | Application |
02AF8A_BF3A | 2020/07/26 | Application | ||
11 | Chaohu Lake | 03DB5D_91FD | 2020/07/03 | Application |
03E612_6A3E | 2020/07/27 | Application | ||
12 | Fujiang River | 03EE9F_8BAF | 2020/08/14 | Application |
04012C_41B2 | 2020/09/19 | Application | ||
13 | Dongting Lake | 03D52B_49F4 | 2020/06/19 | Application |
03E52E_6E8E | 2020/07/25 | Application | ||
14 | Middle and lower reaches of the YRB | 03D2E0_90D3 | 2020/06/14 | Application |
03DD85_0B97 | 2020/07/08 | Application | ||
15 | Middle and lower reaches of the YRB | 03D2E0_261F | 2020/06/14 | Application |
03DD85_725A | 2020/07/08 | Application | ||
16 | Upper reaches of the YRB | 04A272_97F5 | 2021/08/16 | Application |
04B46E_4D61 | 2021/09/21 | Application |
Models | References | Characteristic |
---|---|---|
FCN-8 | [44] | The first CNN segmentation model uses deconvolution instead of fully connected layers. |
UNet | [42] | Symmetric encoder decoder architecture and skip connection design. |
SegNet | [45] | Its decoder’s use of pooling indices for upsampling, enabling precise segmentation while maintaining low computational overhead and model size. |
DeepLab-v3 | [46] | Its Atrous Spatial Pyramid Pooling (ASPP) module captures multi-scale context |
DeepResUNet | [47] | Reducing model parameters while ensuring segmentation accuracy |
Confusion Matrix | Label | ||
Positive | Negative | ||
Predict | Positive | TP | FP |
Negative | FN | TN |
Parameters | Setup |
---|---|
Optimizer | Adam |
Batch size | 10 |
Training times | 60,000 |
Initial learning rate | 0.0001 |
Decay strategy | Exponential decay |
Decay frequency | 10,000 times/0.8 |
Model | OA | Precision | Recall | F1_score | Kappa |
---|---|---|---|---|---|
Baseline | 0.980 | 0.993 | 0.938 | 0.965 | 0.951 |
0.970 | 0.986 | 0.867 | 0.923 | 0.904 | |
Baseline + Resblock | 0.982 | 0.991 | 0.948 | 0.969 | 0.956 |
0.975 | 0.984 | 0.893 | 0.937 | 0.921 | |
Baseline + Resblock + ASPP | 0.987 | 0.984 | 0.973 | 0.978 | 0.969 |
0.981 | 0.968 | 0.938 | 0.953 | 0.941 | |
Baseline + Resblock + SC | 0.985 | 0.985 | 0.965 | 0.975 | 0.965 |
0.979 | 0.970 | 0.926 | 0.947 | 0.934 | |
FloodsNet | 0.990 | 0.994 | 0.972 | 0.983 | 0.976 |
0.985 | 0.987 | 0.940 | 0.963 | 0.954 |
Model | OA | Precision | Recall | F1_score | Kappa |
---|---|---|---|---|---|
FCN-8 | 0.974 | 0.943 | 0.970 | 0.956 | 0.937 |
0.961 | 0.881 | 0.939 | 0.909 | 0.884 | |
UNet | 0.986 | 0.980 | 0.973 | 0.976 | 0.966 |
0.978 | 0.951 | 0.942 | 0.947 | 0.933 | |
SegNet | 0.983 | 0.991 | 0.953 | 0.971 | 0.960 |
0.975 | 0.981 | 0.897 | 0.937 | 0.922 | |
DeepLabv3 | 0.985 | 0.988 | 0.961 | 0.974 | 0.964 |
0.979 | 0.976 | 0.918 | 0.946 | 0.933 | |
DeepResUNet | 0.986 | 0.985 | 0.967 | 0.976 | 0.966 |
0.979 | 0.970 | 0.927 | 0.948 | 0.935 | |
FloodsNet | 0.990 | 0.994 | 0.972 | 0.983 | 0.976 |
0.985 | 0.987 | 0.940 | 0.963 | 0.954 |
Band | OA | Precision | Recall | F1_score | Kappa |
---|---|---|---|---|---|
1 | 0.953 | 0.950 | 0.890 | 0.919 | 0.886 |
0.978 | 0.956 | 0.909 | 0.932 | 0.915 | |
2 | 0.954 | 0.933 | 0.909 | 0.921 | 0.888 |
0.956 | 0.907 | 0.879 | 0.892 | 0.865 | |
3 | 0.990 | 0.994 | 0.972 | 0.983 | 0.976 |
0.985 | 0.987 | 0.940 | 0.963 | 0.954 | |
4 | 0.976 | 0.967 | 0.951 | 0.959 | 0.942 |
0.963 | 0.947 | 0.871 | 0.907 | 0.885 | |
1, 5 | 0.955 | 0.943 | 0.903 | 0.923 | 0.891 |
0.972 | 0.921 | 0.945 | 0.933 | 0.915 | |
2, 5 | 0.952 | 0.932 | 0.903 | 0.917 | 0.883 |
0.955 | 0.901 | 0.880 | 0.890 | 0.862 | |
3, 5 | 0.986 | 0.987 | 0.963 | 0.975 | 0.965 |
0.979 | 0.973 | 0.923 | 0.947 | 0.934 | |
4, 5 | 0.975 | 0.962 | 0.955 | 0.958 | 0.941 |
0.962 | 0.937 | 0.872 | 0.903 | 0.879 | |
1, 2 | 0.958 | 0.936 | 0.921 | 0.928 | 0.898 |
0.963 | 0.912 | 0.910 | 0.911 | 0.888 | |
3, 4 | 0.982 | 0.971 | 0.963 | 0.969 | 0.957 |
0.970 | 0.963 | 0.886 | 0.923 | 0.904 | |
1, 2, 5 | 0.946 | 0.946 | 0.869 | 0.905 | 0.868 |
0.961 | 0.912 | 0.899 | 0.906 | 0.881 | |
3, 4, 5 | 0.981 | 0.969 | 0.967 | 0.968 | 0.954 |
0.970 | 0.951 | 0.899 | 0.924 | 0.905 | |
1, 2, 3, 4 | 0.979 | 0.970 | 0.960 | 0.965 | 0.950 |
0.965 | 0.913 | 0.916 | 0.915 | 0.893 | |
1, 2, 3, 4, 5 | 0.980 | 0.969 | 0.962 | 0.965 | 0.951 |
0.965 | 0.911 | 0.920 | 0.916 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, Z.; Zhang, W.; An, B.; Li, Z.; Li, R.; Chen, Q. Large-Scale Flood Detection and Mapping in the Yangtze River Basin (2016–2021) Using Convolutional Neural Networks with Sentinel-1 SAR Images. Remote Sens. 2025, 17, 2909. https://doi.org/10.3390/rs17162909
Wu X, Zhang Z, Zhang W, An B, Li Z, Li R, Chen Q. Large-Scale Flood Detection and Mapping in the Yangtze River Basin (2016–2021) Using Convolutional Neural Networks with Sentinel-1 SAR Images. Remote Sensing. 2025; 17(16):2909. https://doi.org/10.3390/rs17162909
Chicago/Turabian StyleWu, Xuan, Zhijie Zhang, Wanchang Zhang, Bangsheng An, Zhenghao Li, Rui Li, and Qunli Chen. 2025. "Large-Scale Flood Detection and Mapping in the Yangtze River Basin (2016–2021) Using Convolutional Neural Networks with Sentinel-1 SAR Images" Remote Sensing 17, no. 16: 2909. https://doi.org/10.3390/rs17162909
APA StyleWu, X., Zhang, Z., Zhang, W., An, B., Li, Z., Li, R., & Chen, Q. (2025). Large-Scale Flood Detection and Mapping in the Yangtze River Basin (2016–2021) Using Convolutional Neural Networks with Sentinel-1 SAR Images. Remote Sensing, 17(16), 2909. https://doi.org/10.3390/rs17162909