Hyperspectral Image Denoising via Low-Rank Tucker Decomposition with Subspace Implicit Neural Representation
Abstract
1. Introduction
- The paper adopts Tucker decomposition to explicitly model the low-rank structure of hyperspectral data across both spatial and spectral dimensions. By decomposing the data into a core tensor and a set of mode-specific factor matrices, this method effectively captures intrinsic correlations along each mode.
- The paper identifies a novel continuity prior in the factor matrices obtained through Tucker decomposition, revealing that the inherent local smoothness and continuity of hyperspectral data are preserved in its subspace representations. This finding provides a new and effective way to characterize the spatial information of HSI data.
- The paper proposes leveraging implicit neural representations to model the continuity of factor matrices. By doing so, each column of a factor matrix can adaptively learn its intrinsic level of continuity, enabling more accurate and flexible encoding of continuity priors.
- The paper develops an unsupervised optimization framework that requires no additional training data. This approach combines the advantages of both model-driven and data-driven methods, eliminating concerns over generalization, and achieves state-of-the-art denoising performance in extensive experiments.
2. Related Work
2.1. Model-Driven Methods
2.2. Data-Driven Methods
3. Low-Rank Tucker Subspace Factor Parameterized Representation
3.1. Problem Formulation
3.2. Priori Mining
3.3. Parametric Representation
3.4. Models
3.5. Optimization
Algorithm 1 LRTSINR for HSI Denoising. |
|
3.6. Time Complexity Analysis
4. Experiments
4.1. Synthetic Data Experiments
- (a)
- Each band is corrupted by zero-mean Gaussian noise with a fixed standard deviation of 0.1.
- (b)
- Same as (a), with an additional deadline introduced in DC mall bands 91–130 and Cloth bands 21–30. The width of the deadline is randomly selected from 1, 2, and 3.
- (c)
- Each band is corrupted by Gaussian noise with standard variance 0.075 and salt-and-pepper noise with a missing fraction of 0.15.
- (d)
- Same as (c), with an added deadline in DC mall bands 91–130 and Cloth bands 21–30. The deadline width is randomly chosen from 1, 2, 3.
- (e)
- Each band is corrupted by Gaussian noise with standard deviation randomly sampled from [0, 0.1], and salt-and-pepper noise with missing fraction randomly selected from [0, 0.2]. A deadline is also added in DC mall bands 91–130 and Cloth bands 21–30, with randomly chosen widths from 1, 2, and 3.
4.2. Real Data Experiments
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Su, Y.; Gao, L.; Jiang, M.; Plaza, A.; Sun, X.; Zhang, B. NSCKL: Normalized spectral clustering with kernel-based learning for semisupervised hyperspectral image classification. IEEE Trans. Cybern. 2022, 53, 6649–6662. [Google Scholar] [CrossRef]
- Jiang, M.; Su, Y.; Gao, L.; Plaza, A.; Zhao, X.L.; Sun, X.; Liu, G. GraphGST: Graph generative structure-aware transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5504016. [Google Scholar] [CrossRef]
- Su, Y.; Chen, J.; Gao, L.; Plaza, A.; Jiang, M.; Xu, X.; Sun, X.; Li, P. ACGT-Net: Adaptive cuckoo refinement-based graph transfer network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5521314. [Google Scholar] [CrossRef]
- Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Trans. Image Process. 2016, 25, 2337–2352. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, M.; Chen, Y.; Zhang, H. An Unsupervised Dehazing Network with Hybrid Prior Constraints for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5514715. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS J. Photogramm. Remote Sens. 2020, 162, 148–160. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, W.; Zhang, Y.; Li, F.; Shen, C.; Shi, Q. Hyperspectral compressive sensing using manifold-structured sparsity prior. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 3550–3558. [Google Scholar]
- Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-sparsity and nonlocal-smoothness-based blind hyperspectral unmixing. IEEE Trans. Image Process. 2019, 28, 2991–3006. [Google Scholar] [CrossRef]
- Goetz, A.F. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM (JACM) 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4729–4743. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 925–938. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; Zhang, B. Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 2949–2956. [Google Scholar]
- Peng, J.; Xie, Q.; Zhao, Q.; Wang, Y.; Yee, L.; Meng, D. Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing. IEEE Trans. Image Process. 2020, 29, 7889–7903. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; He, W.; Zhang, L. Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3071–3084. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2015, 54, 178–188. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X.L.; Meng, D. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1227–1243. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.Q.; Bu, Y.; Liao, W.; Chan, J.C.W.; Philips, W. Spatial-spectral structured sparse low-rank representation for hyperspectral image super-resolution. IEEE Trans. Image Process. 2021, 30, 3084–3097. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Jia, X.; Zhang, H.; Meng, D. Stable Local-Smooth Principal Component Pursuit. SIAM J. Imaging Sci. 2024, 17, 1182–1205. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Wu, T.; Chan, J.C.W. Tensor convolution-like low-rank dictionary for high-dimensional image representation. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 13257–13270. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z. Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1888–1902. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.W. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [Google Scholar] [CrossRef]
- Zhuang, L.; Fu, X.; Ng, M.K.; Bioucas-Dias, J.M. Hyperspectral image denoising based on global and nonlocal low-rank factorizations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10438–10454. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q. Non-local meets global: An integrated paradigm for hyperspectral denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6868–6877. [Google Scholar]
- Zhuang, L.; Bioucas-Dias, J.M. Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 730–742. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q.; Zhang, H.; Zhang, L. Non-local meets global: An iterative paradigm for hyperspectral image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2089–2107. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Liu, X.; Rui, X.; Meng, D. Fast noise removal in hyperspectral images via representative coefficient total variation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5546017. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 2018, 28, 1923–1938. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Zhao, Q.; Yao, J.; Zhang, H.; Meng, D. Learnable Representative Coefficient Image Denoiser for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5506516. [Google Scholar] [CrossRef]
- Cao, X.; Fu, X.; Xu, C.; Meng, D. Deep spatial-spectral global reasoning network for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5504714. [Google Scholar] [CrossRef]
- Wei, K.; Fu, Y.; Huang, H. 3-D quasi-recurrent neural network for hyperspectral image denoising. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 363–375. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1205–1218. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral image restoration via convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 667–682. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, J.; Tao, S.; Lu, J.; Zhou, J.; Qian, Y. SMDS-Net: Model guided spectral-spatial network for hyperspectral image denoising. IEEE Trans. Image Process. 2022, 31, 5469–5483. [Google Scholar] [CrossRef]
- Bodrito, T.; Zouaoui, A.; Chanussot, J.; Mairal, J. A trainable spectral-spatial sparse coding model for hyperspectral image restoration. Adv. Neural Inf. Process. Syst. 2021, 34, 5430–5442. [Google Scholar]
- Zhang, Q.; Zhu, J.; Dong, Y.; Zhao, E.; Song, M.; Yuan, Q. 10-minute forest early wildfire detection: Fusing multi-type and multi-source information via recursive transformer. Neurocomputing 2025, 616, 128963. [Google Scholar] [CrossRef]
- Zhuang, L.; Ng, M.K. FastHyMix: Fast and parameter-free hyperspectral image mixed noise removal. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 4702–4716. [Google Scholar] [CrossRef]
- Jiang, T.X.; Zhuang, L.; Huang, T.Z.; Zhao, X.L.; Bioucas-Dias, J.M. Adaptive hyperspectral mixed noise removal. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5511413. [Google Scholar]
- Sidorov, O.; Yngve Hardeberg, J. Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Miao, Y.C.; Zhao, X.L.; Fu, X.; Wang, J.L.; Zheng, Y.B. Hyperspectral Denoising Using Unsupervised Disentangled Spatiospectral Deep Priors. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5513916. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Song, M.; Yu, H.; Zhang, L. Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising. IEEE Trans. Image Process. 2022, 31, 6356–6368. [Google Scholar] [CrossRef]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 9446–9454. [Google Scholar]
- Luo, Y.S.; Zhao, X.L.; Jiang, T.X.; Zheng, Y.B.; Chang, Y. Hyperspectral mixed noise removal via spatial-spectral constrained unsupervised deep image prior. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9435–9449. [Google Scholar] [CrossRef]
- Shi, K.; Peng, J.; Gao, J.; Luo, Y.; Xu, S. Hyperspectral Image denoising via Double Subspace Deep Prior. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5531015. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5249–5257. [Google Scholar]
- Rasti, B.; Ulfarsson, M.O.; Ghamisi, P. Automatic hyperspectral image restoration using sparse and low-rank modeling. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2335–2339. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, X.; Zhao, Q.; Meng, D.; Xu, Z. Denoising hyperspectral image with non-iid noise structure. IEEE Trans. Cybern. 2017, 48, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, Y.; Zhang, H.; Wang, J.; Meng, D. Exact decomposition of joint low rankness and local smoothness plus sparse matrices. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5766–5781. [Google Scholar] [CrossRef]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 2012, 22, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yan, L.; Zhong, S. Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4260–4268. [Google Scholar]
- Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Chen, Y.; He, W. Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8450–8464. [Google Scholar] [CrossRef]
- Pang, L.; Gu, W.; Cao, X. TRQ3DNet: A 3D quasi-recurrent and transformer based network for hyperspectral image denoising. Remote Sens. 2022, 14, 4598. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, D.; Jiang, J.; Liu, X. ADRN: Attention-based deep residual network for hyperspectral image denoising. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Virtually, 4–8 May 2020; pp. 2668–2672. [Google Scholar]
- Shi, Q.; Tang, X.; Yang, T.; Liu, R.; Zhang, L. Hyperspectral image denoising using a 3-D attention denoising network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10348–10363. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, J.; Zhao, Q.; Lu, J.; Qian, Y. MAC-Net: Model-aided nonlocal neural network for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5519414. [Google Scholar] [CrossRef]
- Li, M.; Fu, Y.; Zhang, Y. Spatial-spectral transformer for hyperspectral image denoising. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 1368–1376. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Cao, X.; Wang, J.; Zhao, Q.; Meng, D. Hyperspectral image denoising via nonlocal spectral sparse subspace representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5189–5203. [Google Scholar] [CrossRef]
- Sitzmann, V.; Martel, J.; Bergman, A.; Lindell, D.; Wetzstein, G. Implicit neural representations with periodic activation functions. Adv. Neural Inf. Process. Syst. 2020, 33, 7462–7473. [Google Scholar]
- Luo, Y.; Zhao, X.; Li, Z.; Ng, M.K.; Meng, D. Low-rank tensor function representation for multi-dimensional data recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 3351–3369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ren, R.; Yan, X.; Zhang, H.; Zhu, Y. Effects of microplastics on dissipation of oxytetracycline and its relevant resistance genes in soil without and with Serratia marcescens: Comparison between biodegradable and conventional microplastics. Ecotoxicol. Environ. Saf. 2024, 287, 117235. [Google Scholar] [CrossRef]
Noise Types | Metrics | Noisy | LRMR | LRTV | LRTD TV | CTV | RCTV | NG Meet | FHy Mix | RCI LD | S2DIP | LRT SINR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Case (a) | MPSNR | 20.00 | 34.63 | 33.47 | 32.42 | 33.43 | 36.61 | 38.05 | 37.65 | 38.23 | 35.01 | 35.68 |
MSSIM | 0.5146 | 0.9627 | 0.9456 | 0.9318 | 0.9478 | 0.9736 | 0.9833 | 0.9811 | 0.9838 | 0.9637 | 0.9669 | |
MSAM | 0.4754 | 0.1007 | 0.0883 | 0.0836 | 0.1147 | 0.0803 | 0.0586 | 0.0661 | 0.0579 | 0.0820 | 0.0767 | |
ERGAS | 376.01 | 67.07 | 76.11 | 85.79 | 77.86 | 53.59 | 45.03 | 47.36 | 44.86 | 58.54 | 56.18 | |
Time(s) | – | 21.78 | 79.19 | 116.80 | 58.26 | 4.07 | 35.10 | 0.49 | 1.76 | 15380 | 68.22 | |
Case (b) | MPSNR | 19.86 | 34.32 | 33.49 | 32.31 | 33.25 | 36.03 | 37.05 | 36.65 | 37.73 | 34.87 | 35.53 |
MSSIM | 0.5093 | 0.9615 | 0.9444 | 0.9307 | 0.9465 | 0.9714 | 0.9799 | 0.9771 | 0.9808 | 0.9625 | 0.9666 | |
MSAM | 0.4810 | 0.1027 | 0.0909 | 0.0851 | 0.1175 | 0.0858 | 0.0666 | 0.0716 | 0.0679 | 0.0843 | 0.0772 | |
ERGAS | 381.49 | 69.63 | 78.66 | 87.02 | 79.40 | 59.87 | 53.32 | 54.15 | 46.86 | 61.25 | 57.24 | |
Time(s) | – | 22.50 | 78.48 | 112.60 | 55.36 | 3.84 | 34.81 | 0.30 | 1.76 | 15420 | 66.48 | |
Case (c) | MPSNR | 12.38 | 34.17 | 34.29 | 32.60 | 34.72 | 33.73 | 24.47 | 23.72 | 26.75 | 34.01 | 35.50 |
MSSIM | 0.2206 | 0.9566 | 0.9525 | 0.9357 | 0.9615 | 0.9216 | 0.8392 | 0.8263 | 0.8719 | 0.9371 | 0.9658 | |
MSAM | 0.7334 | 0.0993 | 0.0992 | 0.1069 | 0.0956 | 0.0826 | 0.1817 | 0.1834 | 0.1556 | 0.0909 | 0.0825 | |
ERGAS | 925.37 | 72.94 | 76.78 | 84.12 | 67.38 | 79.90 | 241.84 | 239.24 | 166.51 | 78.34 | 62.70 | |
Time(s) | – | 22.25 | 89.24 | 113.63 | 56.90 | 3.75 | 36.33 | 0.29 | 1.76 | 15428 | 66.48 | |
Case (d) | MPSNR | 12.38 | 34.63 | 34.17 | 32.50 | 34.53 | 33.83 | 24.61 | 23.58 | 25.98 | 34.00 | 35.33 |
MSSIM | 0.2196 | 0.9627 | 0.9511 | 0.9345 | 0.9603 | 0.9288 | 0.8368 | 0.8231 | 0.8607 | 0.9399 | 0.9666 | |
MSAM | 0.7351 | 0.0904 | 0.1027 | 0.1011 | 0.0975 | 0.0973 | 0.1803 | 0.1852 | 0.1584 | 0.1000 | 0.0788 | |
ERGAS | 924.36 | 68.71 | 80.96 | 85.07 | 68.85 | 82.56 | 238.53 | 241.24 | 172.83 | 81.76 | 62.07 | |
Time(s) | – | 22.33 | 78.84 | 113.10 | 56.05 | 3.71 | 35.14 | 0.29 | 1.84 | 15444 | 66.48 | |
Case (e) | MPSNR | 15.20 | 36.76 | 36.29 | 34.86 | 37.86 | 36.99 | 27.13 | 24.09 | 29.43 | 36.64 | 38.42 |
MSSIM | 0.3688 | 0.9757 | 0.9680 | 0.9627 | 0.9819 | 0.9691 | 0.8786 | 0.8328 | 0.9012 | 0.9685 | 0.9826 | |
MSAM | 0.6674 | 0.0714 | 0.1305 | 0.0659 | 0.0656 | 0.0737 | 0.1730 | 0.3924 | 0.1323 | 0.1021 | 0.0655 | |
ERGAS | 758.52 | 47.87 | 141.25 | 65.47 | 44.27 | 55.09 | 192.90 | 378.72 | 164.42 | 89.55 | 47.53 | |
Time(s) | – | 27.58 | 81.36 | 120.01 | 58.26 | 3.82 | 36.06 | 0.28 | 1.84 | 15328 | 66.48 |
Noise Types | Metrics | Noisy | LRMR | LRTV | LRTD TV | CTV | RCTV | NG Meet | FHy Mix | RCI LD | S2DIP | LRT SINR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Case (a) | MPSNR | 20.00 | 29.56 | 29.13 | 31.18 | 30.69 | 31.00 | 35.56 | 33.29 | 35.89 | 32.01 | 32.42 |
MSSIM | 0.7248 | 0.9426 | 0.9155 | 0.9430 | 0.9385 | 0.9414 | 0.9820 | 0.9670 | 0.9842 | 0.9427 | 0.9509 | |
MSAM | 0.4159 | 0.1299 | 0.1111 | 0.0998 | 0.1103 | 0.1151 | 0.0530 | 0.0787 | 0.0512 | 0.1023 | 0.0841 | |
ERGAS | 362.81 | 117.90 | 126.35 | 98.76 | 104.60 | 101.03 | 58.76 | 77.70 | 55.52 | 94.32 | 83.20 | |
Time(s) | – | 52.19 | 242.00 | 228.35 | 88.04 | 10.84 | 226.72 | 2.47 | 2.32 | 6340 | 101.23 | |
Case (b) | MPSNR | 19.85 | 29.46 | 29.23 | 31.12 | 30.65 | 30.73 | 34.71 | 32.96 | 35.12 | 31.24 | 31.70 |
MSSIM | 0.7171 | 0.9405 | 0.9161 | 0.9424 | 0.9373 | 0.9361 | 0.9769 | 0.9633 | 0.9832 | 0.9378 | 0.9431 | |
MSAM | 0.4226 | 0.1320 | 0.1044 | 0.1005 | 0.1110 | 0.1203 | 0.0615 | 0.0812 | 0.0542 | 0.1023 | 0.0873 | |
ERGAS | 366.73 | 118.89 | 123.68 | 99.43 | 104.94 | 103.77 | 65.77 | 80.24 | 60.52 | 94.32 | 86.23 | |
Time(s) | – | 47.25 | 241.36 | 213.33 | 77.77 | 9.10 | 218.92 | 2.33 | 2.32 | 6340 | 102.12 | |
Case (c) | MPSNR | 12.45 | 28.75 | 29.41 | 31.41 | 31.61 | 30.67 | 22.00 | 28.93 | 26.85 | 30.97 | 32.26 |
MSSIM | 0.3840 | 0.9262 | 0.9265 | 0.9478 | 0.9524 | 0.9334 | 0.7583 | 0.9210 | 0.8722 | 0.9432 | 0.9576 | |
MSAM | 0.6848 | 0.1468 | 0.0991 | 0.0968 | 0.0970 | 0.1050 | 0.2605 | 0.1183 | 0.0939 | 0.1609 | 0.0899 | |
ERGAS | 886.36 | 134.38 | 122.56 | 97.03 | 94.12 | 98.87 | 322.18 | 127.13 | 185.64 | 91.45 | 88.79 | |
Time(s) | – | 52.60 | 257.13 | 212.85 | 78.15 | 8.64 | 229.11 | 2.21 | 2.46 | 6345 | 99.42 | |
Case (d) | MPSNR | 12.43 | 28.48 | 29.44 | 31.29 | 31.58 | 30.58 | 22.05 | 28.66 | 26.68 | 31.14 | 32.11 |
MSSIM | 0.3814 | 0.9227 | 0.9270 | 0.9467 | 0.9522 | 0.9363 | 0.7566 | 0.9136 | 0.8665 | 0.9406 | 0.9559 | |
MSAM | 0.6888 | 0.1519 | 0.0970 | 0.0987 | 0.0971 | 0.1062 | 0.2633 | 0.1249 | 0.0944 | 0.1665 | 0.0908 | |
ERGAS | 886.87 | 137.35 | 121.38 | 98.38 | 94.40 | 102.87 | 323.14 | 131.81 | 189.21 | 102.62 | 99.15 | |
Time(s) | – | 50.81 | 276.65 | 279.24 | 125.40 | 15.19 | 390.59 | 2.14 | 2.53 | 6366 | 99.23 | |
Case (e) | MPSNR | 14.59 | 28.97 | 31.29 | 33.46 | 34.80 | 32.51 | 24.70 | 33.05 | 30.38 | 34.02 | 35.44 |
MSSIM | 0.4881 | 0.9152 | 0.9510 | 0.9687 | 0.9739 | 0.9547 | 0.8260 | 0.9626 | 0.9202 | 0.9698 | 0.9816 | |
MSAM | 0.6275 | 0.1704 | 0.0943 | 0.0784 | 0.0633 | 0.0704 | 0.2457 | 0.1015 | 0.1418 | 0.0647 | 0.0616 | |
ERGAS | 802.14 | 182.94 | 105.82 | 78.50 | 59.79 | 74.23 | 279.87 | 90.06 | 150.80 | 55.05 | 52.43 | |
Time(s) | – | 115.25 | 402.63 | 264.09 | 79.45 | 9.38 | 245.58 | 2.02 | 2.67 | 6384 | 101.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Sun, D.; Yang, Y.; Guo, Z.; Peng, J. Hyperspectral Image Denoising via Low-Rank Tucker Decomposition with Subspace Implicit Neural Representation. Remote Sens. 2025, 17, 2867. https://doi.org/10.3390/rs17162867
Cheng C, Sun D, Yang Y, Guo Z, Peng J. Hyperspectral Image Denoising via Low-Rank Tucker Decomposition with Subspace Implicit Neural Representation. Remote Sensing. 2025; 17(16):2867. https://doi.org/10.3390/rs17162867
Chicago/Turabian StyleCheng, Cheng, Dezhi Sun, Yaoyuan Yang, Zhoucheng Guo, and Jiangjun Peng. 2025. "Hyperspectral Image Denoising via Low-Rank Tucker Decomposition with Subspace Implicit Neural Representation" Remote Sensing 17, no. 16: 2867. https://doi.org/10.3390/rs17162867
APA StyleCheng, C., Sun, D., Yang, Y., Guo, Z., & Peng, J. (2025). Hyperspectral Image Denoising via Low-Rank Tucker Decomposition with Subspace Implicit Neural Representation. Remote Sensing, 17(16), 2867. https://doi.org/10.3390/rs17162867