Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Satellite Imagery Acquisition
2.2.2. Environmental Variable (EV) Acquisition
2.2.3. NEP Data Acquisition
2.2.4. Remote Sensing Variable (RSV) Acquisition
2.3. Methods
2.3.1. Variable Selection Based on Feature Importance
2.3.2. Random Forest Regression
2.3.3. Extreme Gradient Boosting Regression
2.3.4. Categorical Boosting Regression
2.4. SHapley Additive exPlanations (SHAP)
2.5. Accuracy Analysis
3. Results
3.1. Machine Learning-Based NEP Estimation
3.2. NEP Estimation Model Based on Feature Selection
3.2.1. Accuracy Assessment of Variable-Selected Models Based on Importance Analysis
3.2.2. Accuracy Evaluation of VSURF-Based Feature-Selected Models
3.3. SHAP Interpretation of XGBR Model
3.3.1. SHAP-Based Single-Factor Impact Analysis
3.3.2. SHAP-Based Analysis of Feature Interactions
4. Discussion
4.1. Performance of ML-Based Algorithms
4.2. Variable Selection for NEP
4.3. The Driving Mechanisms of NEP and Their Ecological Implications as Revealed by the SHAP Framework
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellard, C.; Marino, C.; Courchamp, F. Ranking threats to biodiversity and why it doesn’t matter. Nat. Commun. 2022, 13, 2616. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef]
- Kantzas, E.P.; Val Martin, M.; Lomas, M.R.; Eufrasio, R.M.; Renforth, P.; Lewis, A.L.; Taylor, L.L.; Mecure, J.-F.; Pollitt, H.; Vercoulen, P.V.; et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nat. Geosci. 2022, 15, 382–389. [Google Scholar] [CrossRef]
- Cao, M.; Prince, S.D.; Li, K.; Tao, B.; Small, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Change Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Canadell, J.G.; Pataki, D.E.; Gifford, R.; Houghton, R.A.; Luo, Y.; Raupach, M.R.; Smith, P.; Steffen, W. Saturation of the terrestrial carbon sink. In Terrestrial Ecosystems in a Changing World; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–78. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- He, H.; Wang, S.; Zhang, L.; Wang, J.; Ren, X.; Zhou, L.; Piao, S.; Yan, H.; Ju, W.; Gu, F. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl. Sci. Rev. 2019, 6, 505–514. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Woodwell, G.M.; Whittaker, R.; Reiners, W.; Likens, G.E.; Delwiche, C.; Botkin, D. The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, G.; Agustì-Parareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A. Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef]
- Reddy, G.O. Satellite remote sensing sensors: Principles and applications. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Springer : Cham, Switzerland, 2018; Volume 21, pp. 21–43. [Google Scholar]
- Chen, H.; Wang, B.; Zheng, L.; Shahtahmassebi, Z. Quantifying Impacts of Regional Multiple Factors on Spatiotemporal the Mechanisms for Spatio-temporal changes of Net Primary Vegetation Productivity and Net Ecosystem Productivity: An Example in the Jianghuai River Basin, China. Photogramm. Eng. Remote Sens. 2023, 89, 761–771. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Chen, T.; Zhang, F.; Zhu, S. Exploring the spatiotemporal dynamics and driving factors of net ecosystem productivity in China from 1982 to 2020. Remote Sens. 2023, 16, 60. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, H.; Zhang, M. Evolutionary characteristics of carbon sources/sinks in Chinese terrestrial ecosystems regarding to temporal effects and geographical partitioning. Ecol. Indic. 2024, 160, 111923. [Google Scholar] [CrossRef]
- He, Z.; Yuan, W. Exploring the Influencing Factors of Net Ecosystem Productivity (NEP) Based on Random Forest and SHAP. Acad. J. Sci. Technol. 2024, 12, 242–248. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Shi, Y.; Wang, S.; Wang, L.; Zhang, L.; Kang, J. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sens. 2022, 14, 1902. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Zhou, G.; Zheng, J.; Li, X.; Xu, Y.; Huang, Z.; Yin, S. Simulated net ecosystem productivity of subtropical forests and its response to climate change in Zhejiang Province, China. Sci. Total Environ. 2022, 838, 155993. [Google Scholar] [CrossRef]
- Sun, J.; Mao, F.; Du, H.; Li, X.; Xu, C.; Zheng, Z.; Teng, X.; Ye, F.; Yang, N.; Huang, Z. Improving the Simulation Accuracy of the Net Ecosystem Productivity of Subtropical Forests in China: Sensitivity Analysis and Parameter Calibration Based on the BIOME-BGC Model. Forests 2024, 15, 552. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Guo, J.; Zhou, J.; He, L. Spatial–temporal pattern of vegetation carbon sequestration and its response to rocky desertification control measures in a karst area, in Guangxi Province, China. Land Degrad. Dev. 2023, 34, 665–681. [Google Scholar] [CrossRef]
- Feng, Q.; Zhou, Z.; Chen, Q.; Zhu, C.; Zhu, M.; Luo, W.; Wang, J. Quantifying the extent of ecological impact from China’s poverty alleviation relocation program: A case study in Guizhou Province. J. Clean. Prod. 2024, 444, 141274. [Google Scholar] [CrossRef]
- Qiu, S.; Liang, L.; Wang, Q.; Geng, D.; Wu, J.; Wang, S.; Chen, B. Estimation of European terrestrial ecosystem NEP based on an improved CASA model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 1244–1255. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Q.; Qiu, S.; Geng, D.; Wang, S. NEP estimation of terrestrial ecosystems in China using an improved CASA model and soil respiration model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 10203–10215. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Gholami, R.; Fakhari, N. Support vector machine: Principles, parameters, and applications. In Handbook of Neural Computation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 515–535. [Google Scholar]
- Kumar, S.; Bhatnagar, V. A review of regression models in machine learning. J. Intell. Syst. Comput. 2022, 3, 40–47. [Google Scholar] [CrossRef]
- Liu, J.; Zuo, Y.; Wang, N.; Yuan, F.; Zhu, X.; Zhang, L.; Zhang, J.; Sun, Y.; Guo, Z.; Guo, Y. Comparative analysis of two machine learning algorithms in predicting site-level net ecosystem exchange in major biomes. Remote Sens. 2021, 13, 2242. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, T.; Tian, L.; Huang, B.; Yang, J.; Zeng, Z. Ada-xg-CatBoost: A combined forecasting model for gross ecosystem product (GEP) prediction. Sustainability 2024, 16, 7203. [Google Scholar] [CrossRef]
- Li, L.; Zeng, Z.; Zhang, G.; Duan, K.; Liu, B.; Cai, X. Exploring the Individualized Effect of Climatic Drivers on MODIS Net Primary Productivity through an Explainable Machine Learning Framework. Remote Sens. 2022, 14, 4401. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Wang, X.; Zhu, J.; Zhao, G.; Zheng, Z.; Tao, J.; Zhang, Y.; Li, J. Estimation of net ecosystem productivity on the tibetan plateau grassland from 1982 to 2018 based on random forest model. Remote Sens. 2023, 15, 2375. [Google Scholar] [CrossRef]
- Grimmer, J.; Roberts, M.E.; Stewart, B.M. Machine learning for social science: An agnostic approach. Annu. Rev. Political Sci. 2021, 24, 395–419. [Google Scholar] [CrossRef]
- Tan, H.; Kou, W.; Xu, W.; Wang, L.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations using deep learning on UAV multispectral imagery. Drones 2025, 9, 32. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Sardans, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Vicca, S.; Canadell, J.; Bastos, A.; Friedlingstein, P.; Sitch, S. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 2019, 9, 73–79. [Google Scholar] [CrossRef]
- Li, G.; Wang, D.; Wang, K.; Lin, L. A two-dimensional sample screening method based on data quality and variable correlation. Anal. Chim. Acta 2022, 1203, 339700. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Bi, C.; Yang, K.; Zhang, S.; Zeng, W.; Liu, J.; Rao, Y.; Ma, Y.; Yang, X. Simulation and analysis of afforestation potential areas under different development scenarios in Yunnan Province, China. Ecol. Indic. 2024, 167, 112695. [Google Scholar] [CrossRef]
- Meng, L.; Yang, R.; Sun, M.; Zhang, L.; Li, X. Regional Sustainable Strategy Based on the Coordination of Ecological Security and Economic Development in Yunnan Province, China. Sustainability 2023, 15, 7540. [Google Scholar] [CrossRef]
- Luo, J.; Zhan, J.; Lin, Y.; Zhao, C. An equilibrium analysis of the land use structure in the Yunnan Province, China. Front. Earth Sci. 2014, 8, 393–404. [Google Scholar] [CrossRef]
- Vermote, E.; Kotchenova, S.; Ray, J. MODIS Surface Reflectance User’s Guide; MODIS Land Surface Reflectance Science Computing Facility; Satellite Atmosphere correction & Land Surface Applications: Greenbelt, MD, USA, 2011; Volume 1, pp. 1–40. [Google Scholar]
- Smith, P. Bilinear interpolation of digital images. Ultramicroscopy 1981, 6, 201–204. [Google Scholar] [CrossRef]
- Karthiga, R.; Usha, G.; Raju, N.; Narasimhan, K. Transfer Learning Based Breast cancer Classification using One-Hot Encoding Technique. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 115–120. [Google Scholar]
- Pei, Z.Y.; Ouyang, H.; Zhou, C.P.; Xu, X.L. Carbon balance in an alpine steppe in the Qinghai-Tibet Plateau. J. Integr. Plant Biol. 2009, 51, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, G.; Jiang, D.; Fu, J.; Wang, Y. Spatiotemporal evolution characteristics and the climatic response of carbon sources and sinks in the Chinese grassland ecosystem from 2010 to 2020. Sustainability 2022, 14, 8461. [Google Scholar] [CrossRef]
- Guo, H.; Cao, C.; Xu, M.; Yang, X.; Chen, Y.; Wang, K.; Duerler, R.S.; Li, J.; Gao, X. Spatiotemporal distribution pattern and driving factors analysis of GPP in Beijing-Tianjin-Hebei region by Long-term MODIS data. Remote Sens. 2023, 15, 622. [Google Scholar] [CrossRef]
- Cui, G.; Wang, S.; Li, X.; Dong, L.; Zhu, J. Optimal agricultural structure allocation based on carbon source/sink accounting. Ecol. Indic. 2024, 166, 112349. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Paper a 20. In Third Earth Resources Technology Satellite-1 Symposium, Proceedings of the Symposium, Washington, DC, USA, 10–14 December 1973; Goddard Space Flight Center: Washington, DC, USA, 1973; p. 309. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Wang, Q.; Moreno-Martínez, Á.; Muñoz-Marí, J.; Campos-Taberner, M.; Camps-Valls, G. Estimation of vegetation traits with kernel NDVI. ISPRS J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Wang, L.a.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int. J. Remote Sens. 2005, 26, 3867–3873. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. 2015, 7, 19–33. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. An unexpected unity among methods for interpreting model predictions. arXiv 2016, arXiv:1611.07478. [Google Scholar] [CrossRef]
- Shorrocks, A.F. Decomposition procedures for distributional analysis: A unified framework based on the Shapley value. J. Econ. Inequal. 2013, 11, 99–126. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Virdi, J.S.; Peng, W.; Sata, A. Feature selection with LASSO and VSURF to model mechanical properties for investment casting. In Proceedings of the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 21–23 February 2019; pp. 1–6. [Google Scholar]
- Xing, W.; Feng, Z.; Wei, J.; Xu, S.; Shao, Q.; Wang, W.; Shi, X. Impacts of climate extremes on variations in evergreen forest ecosystem carbon–water fluxes across Southern China. Glob. Planet. Chang. 2025, 252, 104867. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S. Particle swarm optimization-XGBoost-based modeling of radio-frequency power amplifier under different temperatures. Int. J. Numer. Model. Electron. Netw. Devices Fields 2024, 37, 13. [Google Scholar] [CrossRef]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data. arXiv 2018, arXiv:1803.11266. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhu, Z.; Xu, M.; Liu, D.; Baluch, S.M.; Zhao, Y. Nonlinear dynamics of ecosystem productivity and its driving mechanisms in arid regions: A case study of Ebinur Lake Basin. J. Environ. Manag. 2025, 386, 125770. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Weibel, B.; Bagstad, K.J.; Ferrari, M.; Tappeiner, U. On the Effects of Scale for Ecosystem Services Mapping. PLoS ONE 2014, 9, e112601. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, K.; Li, J.; Gao, X.; Shi, G. ADCMT: An Augmentation-Free Dynamic Contrastive Multi-Task Transformer for UGC-VQA. IEEE Trans. Broadcast. 2025, 80, 102489. [Google Scholar] [CrossRef]
- Han, D.; Cai, H.; Zhang, L.; Wen, Y. Multi-sensor high spatial resolution leaf area index estimation by combining surface reflectance with vegetation indices for highly heterogeneous regions: A case study of the Chishui River Basin in southwest China. Ecol. Inform. 2024, 80, 102489. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Xu, C.; Du, M.; Zhang, X. Optimizing variables selection of random forest to predict radial growth of Larix gmelinii var. principis-rupprechtii in temperate regions. For. Ecol. Manag. 2024, 569, 122159. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of feature selection and catboost for prediction: The first application to the estimation of aboveground biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, J.; Wang, Y.; Su, H. A comparison of NDVI and EVI in the DisTrad model for thermal sub-pixel mapping in densely vegetated areas: A case study in Southern China. Int. J. Remote Sens. 2018, 39, 2105–2118. [Google Scholar] [CrossRef]
- Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Yu, Q.; Wang, S.; Montagnani, L.; Magliulo, V. Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types. Ecol. Indic. 2017, 72, 153–164. [Google Scholar] [CrossRef]
- Wang, W.; Han, F.; Kong, Z.; Ling, H.; Hao, X. The maximum threshold of vegetation restoration (EVI-Area) in typical watersheds of arid regions under water constraints. Ecol. Indic. 2024, 158, 111580. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W.; Zhang, L.; Zhang, J.; Xiang, J. Vegetation EVI changes and response to natural factors and human activities based on geographically and temporally weighted regression. Glob. Ecol. Conserv. 2023, 45, e02531. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Qu, F.-Y.; Fan, R.-X.; Chen, Z.; Wang, Q.-F.; Yu, G.-R. Effects of ecosystem types on the spatial variations in annual gross primary productivity over terrestrial ecosystems of China. Sci. Total Environ. 2022, 833, 155242. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Shaghaleh, H.; Zhang, K.; Okla, M.K.; Alaraidh, I.A.; Sheteiwy, M.S.; AbdElgawad, H. Increasing soil clay content increases soil phosphorus availability and improves the growth, physiology, and phosphorus uptake of rice under alternative wetting and mild drying irrigation. Environ. Technol. Innov. 2024, 35, 103691. [Google Scholar] [CrossRef]
- Churchman, G.J.; Singh, M.; Schapel, A.; Sarkar, B.; Bolan, N. Clay minerals as the key to the sequestration of carbon in soils. Clays Clay Miner. 2020, 68, 135–143. [Google Scholar] [CrossRef]
- Ury, E.A.; Wright, J.P.; Ardon, M.; Bernhardt, E.S. Saltwater intrusion in context: Soil factors regulate impacts of salinity on soil carbon cycling. Biogeochemistry 2022, 157, 215–226. [Google Scholar] [CrossRef]
- Ontman, R.; Groffman, P.M.; Driscoll, C.T.; Cheng, Z. Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry 2023, 163, 265–277. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014, 383, 373–385. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, N.; Wang, L.; Song, W.; Zhang, Y.; Niu, Z. Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years. Int. J. Environ. Res. Public Health 2023, 20, 92. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Cheng, D.; Kerkhoff, A.J.; Enquist, B.J. Convergence of terrestrial plant production across global climate gradients. Nature 2014, 512, 39–43. [Google Scholar] [CrossRef]
- Knapp, B.D.; Huang, K.C. The effects of temperature on cellular physiology. Annu. Rev. Biophys. 2022, 51, 499–526. [Google Scholar] [CrossRef]
- Durand, M.; Murchie, E.H.; Lindfors, A.V.; Urban, O.; Aphalo, P.J.; Robson, T.M. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agric. For. Meteorol. 2021, 311, 108684. [Google Scholar] [CrossRef]
- Nijp, J.J.; Limpens, J.; Metselaar, K.; Peichl, M.; Nilsson, M.B.; van der Zee, S.E.; Berendse, F. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 2015, 21, 2309–2320. [Google Scholar] [CrossRef]
- Parton, W.; Morgan, J.; Smith, D.; Del Grosso, S.; Prihodko, L.; LeCain, D.; Kelly, R.; Lutz, S. Impact of precipitation dynamics on net ecosystem productivity. Glob. Change Biol. 2012, 18, 915–927. [Google Scholar] [CrossRef]
- Gray, S.B.; Brady, S.M. Plant developmental responses to climate change. Dev. Biol. 2016, 419, 64–77. [Google Scholar] [CrossRef]
- Bach, E.M.; Baer, S.G.; Meyer, C.K.; Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 2010, 42, 2182–2191. [Google Scholar] [CrossRef]
- Saimun, M.S.R.; Karim, M.R.; Sultana, F.; Arfin-Khan, M.A. Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh. Trees For. People 2021, 5, 100108. [Google Scholar] [CrossRef]
- He, P.; Ma, X.; Meng, X.; Han, Z.; Liu, H.; Sun, Z. Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China. Ecol. Indic. 2022, 143, 109323. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.M.; He, L.; Zhang, Z.; Wang, R.; Rogers, C.; Fan, W.; de Oliveira, G.; Xie, X. Non-linearity between gross primary productivity and far-red solar-induced chlorophyll fluorescence emitted from canopies of major biomes. Remote Sens. Environ. 2022, 271, 112896. [Google Scholar] [CrossRef]
Environmental Variable Name | Abbreviation | Spatial Resolution | Temporal Resolution | Unit |
---|---|---|---|---|
Elevation | Elev | 90 m | - | meters |
Aspect | Aspect | 90 m | - | degrees |
Slope | Slope | 90 m | - | degrees |
Soil pH in H2O | pH | 250 m | - | dimensionless |
Soil Sand Content | SS | 250 m | - | % |
Soil Organic Carbon Content | SOC | 250 m | - | % |
Soil Clay Content | SC | 250 m | - | % |
Potential Evapotranspiration | PET | 1 km | monthly | 0.1 mm |
Temperature | Temp | 1 km | monthly | 0.1 °C |
Precipitation | Precip | 1 km | monthly | 0.1 mm |
Solar Radiation | SolRad | 1 km | monthly | KJ/m2 |
Nighttime Light | NTL | 1 km | yearly | dimensionless (0–63) |
Population Density | PopDens | 1 km | yearly | persons/km2 |
Vegetation Type | VegType | 500 m | yearly | dimensionless (1–17) |
Name | Value |
---|---|
Evergreen Needleleaf Forests | 1 |
Evergreen Broadleaf Forests | 2 |
Deciduous Needleleaf Forests | 3 |
Deciduous Broadleaf Forests | 4 |
Mixed Forests | 5 |
Closed Shrublands | 6 |
Open Shrublands | 7 |
Woody Savannas | 8 |
Savannas | 9 |
Grasslands | 10 |
Permanent Wetlands | 11 |
Croplands | 12 |
Urban and Built-up Lands | 13 |
Cropland/Natural Vegetation Mosaics | 14 |
Permanent Snow and Ice | 15 |
Barren | 16 |
Water Bodies | 17 |
VIs | Name | Formula/Source | Reference |
---|---|---|---|
DVI | Difference vegetation index | [51] | |
EVI | Enhanced vegetation Index | [52] | |
GCVI | Green chlorophyll vegetation index | [53] | |
GI | Green index | [54] | |
GNDVI | Green normalized difference vegetation index | [53] | |
KNDVI | Kernel normalized difference vegetation Index | [55] | |
MSAVI | Modified soil-adjusted vegetation index | [56] | |
MSR | Modified simple ratio | [57] | |
NDVI | Normalized difference vegetation index | (NIR − R)/(NIR + R) | [58] |
NGRDI | Normalized green–red difference index | [54] | |
NLI | Nonlinear index | [59] | |
OSAVI | Optimized soil-adjusted vegetation index | [60] | |
RDVI | Renormalized difference vegetation index | [57] | |
RVI | Ratio vegetation index | NIR/R | [51] |
SAVI | Soil-adjusted vegetation index | [61] | |
TVI | Triangular vegetation index | [62] | |
VARI | Visible atmospherically resistant index | [63] | |
Red | Red band | MOD09A1 | - |
Green | Green band | MOD09A1 | - |
Blue | Blue band | MOD09A1 | - |
NIR | Near-infrared band | MOD09A1 | - |
Method | Features | R2 | RMSE gC/(m2·a) | MAE gC/(m2·a) | |||
---|---|---|---|---|---|---|---|
Training | Testing | Training | Testing | Training | Testing | ||
RFR | RSV | 0.72 | 0.67 | 165.84 | 180.66 | 126.78 | 134.29 |
XGBR | 0.77 | 0.72 | 151.09 | 163.92 | 113.90 | 123.06 | |
CatBoost | 0.73 | 0.72 | 163.48 | 164.95 | 123.58 | 124.52 | |
RFR | EV | 0.79 | 0.76 | 141.67 | 153.27 | 105.24 | 106.33 |
XGBR | 0.82 | 0.81 | 132.89 | 136.79 | 103.25 | 105.99 | |
CatBoost | 0.80 | 0.80 | 139.15 | 139.56 | 106.72 | 106.94 | |
RFR | RSV-EV | 0.88 | 0.87 | 110.13 | 111.40 | 78.26 | 79.43 |
XGBR | 0.90 | 0.89 | 94.00 | 103.97 | 70.38 | 77.28 | |
CatBoost | 0.88 | 0.87 | 109.77 | 111.48 | 81.85 | 82.97 |
Method | Features | R2 | RMSE gC/(m2·a) | MAE gC/(m2·a) | |||
---|---|---|---|---|---|---|---|
Training | Testing | Training | Testing | Training | Testing | ||
RFR | RSV | 0.72 | 0.66 | 166.95 | 180.94 | 128.03 | 134.47 |
XGBR | 0.76 | 0.72 | 151.37 | 163.88 | 114.10 | 123.02 | |
CatBoost | 0.73 | 0.72 | 163.41 | 164.78 | 123.46 | 124.34 | |
RFR | EV | 0.76 | 0.73 | 154.03 | 162.86 | 106.56 | 113.25 |
XGBR | 0.81 | 0.80 | 135.75 | 139.33 | 104.99 | 107.51 | |
CatBoost | 0.80 | 0.79 | 140.67 | 141.42 | 107.56 | 108.01 | |
RFR | RSV-EV | 0.90 | 0.89 | 101.73 | 103.22 | 72.04 | 73.62 |
XGBR | 0.90 | 0.88 | 102.23 | 106.06 | 72.10 | 78.47 | |
CatBoost | 0.87 | 0.87 | 111.98 | 113.81 | 83.02 | 84.23 |
Features | VSURF Features |
---|---|
RSV | EVI, VARI, DVI, TVI, Blue, MSAVI, GNDVI |
EV | VegType, pH, Precip, Temp, SC, PET, SS |
RSV-EV | EVI, VegType, pH, SC, Temp, SS, SolRad, Precip, GI, PET, DVI |
Method | Features | R2 | RMSE gC/(m2·a) | MAE gC/(m2·a) | |||
---|---|---|---|---|---|---|---|
Training | Testing | Training | Testing | Training | Testing | ||
RFR | RSV | 0.74 | 0.71 | 163.23 | 168.00 | 123.12 | 125.34 |
XGBR | 0.73 | 0.70 | 161.46 | 170.60 | 120.02 | 126.24 | |
CatBoost | 0.76 | 0.73 | 149.83 | 162.99 | 113.00 | 121.80 | |
RFR | EV | 0.80 | 0.79 | 138.65 | 141.50 | 107.79 | 97.28 |
XGBR | 0.80 | 0.79 | 139.89 | 143.08 | 108.06 | 110.33 | |
CatBoost | 0.78 | 0.78 | 114.91 | 145.13 | 110.72 | 110.92 | |
RFR | RSV-EV | 0.93 | 0.90 | 78.78 | 97.51 | 61.24 | 69.61 |
XGBR | 0.98 | 0.94 | 22.32 | 76.82 | 16.35 | 55.11 | |
CatBoost | 0.94 | 0.92 | 75.55 | 89.42 | 55.90 | 65.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, L.; Tan, H.; Zhang, J.; Yang, K.; Teng, C.; Huang, K.; Yang, J.; Cheng, T. Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems. Remote Sens. 2025, 17, 2843. https://doi.org/10.3390/rs17162843
Xia L, Tan H, Zhang J, Yang K, Teng C, Huang K, Yang J, Cheng T. Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems. Remote Sensing. 2025; 17(16):2843. https://doi.org/10.3390/rs17162843
Chicago/Turabian StyleXia, Leyan, Hongjian Tan, Jialong Zhang, Kun Yang, Chengkai Teng, Kai Huang, Jingwen Yang, and Tao Cheng. 2025. "Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems" Remote Sensing 17, no. 16: 2843. https://doi.org/10.3390/rs17162843
APA StyleXia, L., Tan, H., Zhang, J., Yang, K., Teng, C., Huang, K., Yang, J., & Cheng, T. (2025). Remote Sensing and Machine Learning Uncover Dominant Drivers of Carbon Sink Dynamics in Subtropical Mountain Ecosystems. Remote Sensing, 17(16), 2843. https://doi.org/10.3390/rs17162843