Exploring Impacts of Land Use and Cover Changes on Ecosystem Services on the Qinghai-Xizang Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Change Map
2.3.2. Change Trajectory Method
2.3.3. HQ Assessment
2.3.4. Four-Quadrant Method
2.3.5. XGBoost-SHAP Analysis Based on Raster Data
3. Results
3.1. Spatial Changes in Land Use and Land Cover in the QXP
3.2. Temporal Changes in Land Use and Land Cover of the QXP
3.3. HQ Analysis of the QXP from 2000 to 2020
3.3.1. Changes in HQ of the QXP from 2000 to 2020
3.3.2. Changes in HQ for Different Land Use Types
3.3.3. Interactive Effects of Land Use Change and HQ on the QXP from 2000 to 2020
3.3.4. Major Driving Factors of Coordination and Conflict Areas
4. Discussion
4.1. The Impact of Land Use Change on HQ
4.2. Land Use Control Policies
4.3. Limitations and Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, E.; Queiroz, C.; Pereira, H.M.; Vicente, L. Ecosystem services and human well-being. A participatory study in a mountain community in Portugal. Ecol. Soc. 2005, 10, 26267725. Available online: https://www.jstor.org/stable/26267725 (accessed on 15 July 2025). [CrossRef]
- Gómez-Baggethun, E.; De Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Guo, F.; Lenoir, J.; Bonebrake, T.C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 2018, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Liu, Z. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.; Wang, Y.; Fu, B. Greater increases in China’s dryland ecosystem vulnerability in drier conditions than in wetter conditions. J. Environ. Manag. 2021, 291, 112689. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.; Zhang, J.e.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef]
- Ruelland, D.; Tribotte, A.; Puech, C.; Dieulin, C. Comparison of methods for LUCC monitoring over 50 years from aerial photographs and satellite images in a Sahelian catchment. Int. J. Remote Sens. 2011, 32, 1747–1777. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, L.; Tang, F.; Wang, G.; Li, M. Construction of an ecological security network in the Fenhe River Basin and its temporal and spatial evolution characteristics. J. Clean. Prod. 2023, 417, 137961. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.-s.; Wang, Z.; Bai, W.; Ding, M.; Wang, X.; Yan, J.; Xu, E.; Wu, X.; Zhang, B.; et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 2865–2875. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, W.; Guo, J.; Su, Y.; Gao, Y.; Bu, W.; Ren, J.; Li, C. How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations. Land 2024, 13, 1730. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.; Liu, Z.; Li, Q.; Zhang, H.; Wei, W. Conflict or Coordination? The Spatiotemporal Relationship Between Humans and Nature on the Qinghai-Tibet Plateau. Earth’s Future 2023, 11, e2022EF003452. [Google Scholar] [CrossRef]
- Cheng, G.; Pan, C.; Zhou, Y. Urban-rural disparities in the ecological impact of built-up land expansion: A comprehensive assessment from China. Appl. Geogr. 2025, 179, 103618. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.a.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Smith, J.A.M.; Reitsma, L.R.; Marra, P.P. Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird. Ecology 2010, 91, 2874–2882. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Y.; Xiao, P.; Tian, Y.; Huang, H.; Xiao, L. Evolution of habitat quality and its topographic gradient effect in northwest hubei province from 2000 to 2020 based on the invest model. Land 2021, 10, 857. [Google Scholar] [CrossRef]
- Fan, X.; Gu, X.; Yu, H.; Long, A.; Tiando, D.S.; Ou, S.; Li, J.; Rong, Y.; Tang, G.; Zheng, Y. The spatial and temporal evolution and drivers of habitat quality in the Hung River Valley. Land 2021, 10, 1369. [Google Scholar] [CrossRef]
- Zhao, B.; Li, S.; Liu, Z.J.S. Multi-scenario simulation and prediction of regional habitat quality based on a system dynamic and patch-generating land-use simulation coupling model—A case study of Jilin Province. Sustainability 2022, 14, 5303. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Vačkář, D.; Chobot, K.; Orlitová, E. Spatial relationship between human population density, land use intensity and biodiversity in the Czech Republic. Landsc. Ecol. 2012, 27, 1279–1290. [Google Scholar] [CrossRef]
- Shi, K.; Wu, Y.; Li, D.; Li, X. Population, GDP, and Carbon Emissions as Revealed by SNPP-VIIRS Nighttime Light Data in China with Different Scales. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3008005. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, H.; Gou, P.; Xu, N. Conflict or Coordination? measuring the relationships between urbanization and vegetation cover in China. Ecol. Indic. 2023, 147, 109993. [Google Scholar] [CrossRef]
- Dong, X.; Liu, M. Relationships among LUCC, ecosystem services and human well-being. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 465–475. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N.; Lahssini, S. Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy 2020, 97, 104796. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Guoli, G.; Jiyuan, L.; Quanqin, S.; Jun, Z. Sand-fixing function under the change of vegetation coverage in a wind erosion area in northern China. J. Resour. Ecol. 2014, 5, 105–114. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; He, D.; Deng, B.; Zhang, E.; Wei, S.; Duan, X. Dynamic monitoring of eco-environmental quality in the Greater Mekong Subregion: Evolutionary characteristics and country differences. Environ. Impact Assess. Rev. 2025, 110, 107700. [Google Scholar] [CrossRef]
- Liu, H.; Lu, J.; Li, X.; Wang, Y.; Xu, D.; Yin, J.; Xu, G. Evaluating human-nature relationships at a grid scale in China, 2000–2020. Habitat Int. 2025, 156, 103282. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Jie, Z.H.U.; Jian, G.; Jingye, L.I. Spatiotemporal change of habitat quality in ecologically sensitive areas of eastern Qinghai-Tibet Plateau: A case study of the Hehuang Valley, Qinghai Province. Resour. Sci. 2020, 42, 991–1003. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, X.; Liu, J.; Liu, W.; Zhang, H.; Jiao, J. Habitat degradation changes and disturbance factors in the Tibetan plateau in the 21st century. Environ. Res. 2024, 260, 119616. [Google Scholar] [CrossRef]
- Su, R.; Duan, C.; Chen, B. The shift in the spatiotemporal relationship between supply and demand of ecosystem services and its drivers in China. J. Environ. Manag. 2024, 365, 121698. [Google Scholar] [CrossRef]
- Baixue, W.; Weiming, C.; Shengxin, L. Impact of land use changes on habitat quality in Altay region. J. Resour. Ecol. 2021, 12, 715–728. [Google Scholar] [CrossRef]
- Liu, S.; Zamanian, K.; Schleuss, P.-M.; Zarebanadkouki, M.; Kuzyakov, Y. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 2018, 252, 93–104. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616–617, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, J.; He, Y.; Chen, P. Evolution and ecological implications of land development and conservation patterns on the Qinghai-Tibet Plateau. Land 2022, 11, 1797. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Xiao, Y.; Xie, G.; Wang, Y.; Zhang, C.; Li, P.; Lei, G. Mapping the spatiotemporal heterogeneity of ecosystem service relationships and bundles in Ningxia, China. J. Clean. Prod. 2021, 294, 126216. [Google Scholar] [CrossRef]
Types | Description | Source |
---|---|---|
Natural factors | Digital elevation model (DEM) | https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 15 July 2025) |
Precipitation (PER) | https://www.geodata.cn/main/ (accessed on 15 July 2025) | |
Temperature (TEM) | https://www.geodata.cn/main/ (accessed on 15 July 2025) | |
SLOPE | Derived from DEM data | |
Soil organic carbon (SOC) | https://gaez.fao.org/pages/hwsd (accessed on 15 July 2025) | |
The distance to the nature reserve (DIS) | ||
Humanistic and social factors | The proportion of industry GDP (GDP) | https://www.resdc.cn/ (accessed on 15 July 2025) |
Population density (POP) | https://www.worldpop.org/ (accessed on 15 July 2025) | |
Nighttime lights (NTL) | http://www.geodata.cn (accessed on 15 July 2025) |
Function | LUCC | Habitat Suitability of Different Land Types | Sensitivity to Cropland | Sensitivity to Barren Land | Sensitivity to Impervious Surfaces |
---|---|---|---|---|---|
HQ | Cropland | 0.9 | 0.8 | 0.8 | 0.6 |
Forest | 1 | 0.9 | 0.6 | 0.6 | |
Shrub | 0.8 | 0.8 | 0.9 | 0.8 | |
Grassland | 0.8 | 0.7 | 0.9 | 0.7 | |
Water | 0.9 | 0.7 | 0.6 | 0.7 | |
Snow/Ice | 0.7 | 0.8 | 0.9 | 0.8 | |
Barren | 0 | 0 | 0 | 0 | |
Impervious | 0 | 0 | 0 | 0 | |
Wetland | 0.6 | 0.6 | 0.7 | 0.7 |
Land Use Type | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Cropland | 0.60 | 0.62 | 0.61 | 0.62 | 0.62 |
Forest | 0.91 | 0.90 | 0.92 | 0.91 | 0.91 |
Shrub | 0.90 | 0.88 | 0.88 | 0.89 | 0.86 |
Grassland | 0.80 | 0.82 | 0.83 | 0.83 | 0.82 |
Water | 0.85 | 0.91 | 0.86 | 0.89 | 0.88 |
Snow/Ice | 0.88 | 0.86 | 0.89 | 0.88 | 0.88 |
Barren | 0 | 0 | 0 | 0 | 0 |
Impervious | 0 | 0 | 0 | 0 | 0 |
Wetland | 0.80 | 0.79 | 0.81 | 0.82 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hu, Z.; Liu, C.; Yang, X.; Zhang, Z.; Sun, W.; Niu, F.; Zhang, E.; Yang, Q. Exploring Impacts of Land Use and Cover Changes on Ecosystem Services on the Qinghai-Xizang Plateau. Remote Sens. 2025, 17, 2840. https://doi.org/10.3390/rs17162840
Li Y, Hu Z, Liu C, Yang X, Zhang Z, Sun W, Niu F, Zhang E, Yang Q. Exploring Impacts of Land Use and Cover Changes on Ecosystem Services on the Qinghai-Xizang Plateau. Remote Sensing. 2025; 17(16):2840. https://doi.org/10.3390/rs17162840
Chicago/Turabian StyleLi, Yingxin, Zhiding Hu, Chenli Liu, Xin Yang, Zhe Zhang, Weizhao Sun, Fuchang Niu, Enwei Zhang, and Qike Yang. 2025. "Exploring Impacts of Land Use and Cover Changes on Ecosystem Services on the Qinghai-Xizang Plateau" Remote Sensing 17, no. 16: 2840. https://doi.org/10.3390/rs17162840
APA StyleLi, Y., Hu, Z., Liu, C., Yang, X., Zhang, Z., Sun, W., Niu, F., Zhang, E., & Yang, Q. (2025). Exploring Impacts of Land Use and Cover Changes on Ecosystem Services on the Qinghai-Xizang Plateau. Remote Sensing, 17(16), 2840. https://doi.org/10.3390/rs17162840