Online-Coupled Aerosol Effects on Cloud Microphysics and Surface Solar Irradiance in WRF-Solar
Abstract
1. Introduction
2. Materials and Methods
2.1. Aerosol Optical Depth (AOD) Observations
2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Satellite Observations
2.3. Solar Radiation Data
2.4. Cloud Optical Thickness (COD) Data
2.5. Experiments Design
2.6. Validation Methods
3. Results
3.1. The Comparison of the Aerosol Characterization
3.2. Impact of QNWFA on Cloud Microphysical Processes and Cloud Fraction
3.3. Impact of Aerosols on GHI Under All Sky Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Chen, W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nat. Commun. 2022, 13, 87. [Google Scholar] [CrossRef]
- Duan, H.; Zhou, S.; Jiang, K.; Bertram, C.; Harmsen, M.; Kriegler, E.; van Vuuren, D.P.; Wang, S.; Fujimori, S.; Tavoni, M.; et al. Assessing China’s efforts to pursue the 1.5 °C warming limit. Science 2021, 372, 378–385. [Google Scholar] [CrossRef]
- Chadly, A.; Moawad, K.; Salah, K.; Omar, M.; Mayyas, A. State of glo bal solar energy market: Overview, China’s role, Challenges, and Opportunities. Sustain. Horiz. 2024, 11, 100108. [Google Scholar] [CrossRef]
- Gautam, S.; Elizabeth, J.; Gautam, A.S.; Singh, K.; Abhilash, P. Impact Assessment of Aerosol Optical Depth on Rainfall in Indian Rural Areas. Aerosol Sci. Eng. 2022, 6, 186–196. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. [Google Scholar] [CrossRef]
- Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; et al. Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 817–922. [Google Scholar] [CrossRef]
- Douglas, A.; L’Ecuyer, T. Quantifying cloud adjustments and the radiative forcing due to aerosol–cloud interactions in satellite observations of warm marine clouds. Atmos. Chem. Phys. 2020, 20, 6225–6241. [Google Scholar] [CrossRef]
- Albrecht, B. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Ming, Y.; Ramaswamy, V. Nonlinear Climate and Hydrological Responses to Aerosol Effects. J. Clim. 2009, 22, 1329–1339. [Google Scholar] [CrossRef]
- Twomey, S. Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Haslett, S.L.; Taylor, J.W.; Deetz, K.; Vogel, B.; Babić, K.; Kalthoff, N.; Wieser, A.; Dione, C.; Lohou, F.; Brito, J.; et al. The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa. Atmos. Chem. Phys. 2019, 19, 1505–1520. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Fan, X.; Chen, Y.; Lin, Z.; Hou, A.; Zhang, S.; Zheng, R.; Chen, J. Measurement report: The variation properties of aerosol hygroscopic growth related to chemical composition during new particle formation days in a coastal city of Southeast China. Atmos. Chem. Phys. 2025, 25, 3669–3685. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88–90. [Google Scholar] [CrossRef]
- Briant, R.; Tuccella, P.; Deroubaix, A.; Khvorostyanov, D.; Menut, L.; Mailler, S.; Turquety, S. Aerosol-radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geosci. Model Dev. 2017, 10, 927–944. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, C.; Du, Q.; Yang, Z.; Jin, C. Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4). Geosci. Model Dev. 2025, 18, 585–603. [Google Scholar] [CrossRef]
- Wen, W.; Hua, T.; Liu, L.; Ma, X.; Tharaka, W.; Xing, Y.; Deng, Z.; Shen, L. Assessment of the Impact of Aerosol Radiation Interaction on “Pollution Reduction and Carbon Reduction Synergy” by Wrf-Chem-Solar; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Peng, Y.; Wright, J.S. Aerosol Effects on Clear-Sky Shortwave Heating in the Asian Monsoon Tropopause Layer. J. Geophys. Res. Atmos. 2023, 128, e2022JD036956. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.-L.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Pulido, M.; Miyoshi, T. Estimating Model Parameters with Ensemble-Based Data Assimilation: Parameter Covariance Treatment. J. Meteorol. Soc. Japan. Ser. II 2013, 91, 453–469. [Google Scholar] [CrossRef]
- Wang, S.; Dai, T.; Li, C.; Cheng, Y.; Huang, G.; Shi, G. Improving Clear-Sky Solar Power Prediction over China by Assimilating Himawari-8 Aerosol Optical Depth with WRF-Chem-Solar. Remote Sens. 2022, 14, 4990. [Google Scholar] [CrossRef]
- Zhong, X.; Ruiz-Arias, J.A.; Kleissl, J. Dissecting surface clear sky irradiance bias in numerical weather prediction: Application and corrections to the New Goddard Shortwave Scheme. Sol. Energy 2016, 132, 103–113. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Hacker, J.P.; Dudhia, J.; Haupt, S.E.; Ruiz-Arias, J.A.; Gueymard, C.A.; Thompson, G.; Eidhammer, T.; Deng, A. WRF-Solar: Description and Clear-Sky Assessment of an Augmented NWP Model for Solar Power Prediction. Bull. Am. Meteorol. Soc. 2016, 97, 1249–1264. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.; Kahn, R.; Kinne, S.; Kivekas, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; Dai, T.; Cao, J.; Husi, L.; Ma, R.; Li, C. Investigating the role of aerosol wet scavenging on global horizontal irradiance simulation in the WRF-Chem-solar model. Appl. Energy 2025, 396, 126062. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Levy, R.C.; Hsu, N.C.; Eck, T.F.; Smirnov, A.; Goloub, P.; Holben, B.N.; Dubovik, O.; O’Neill, N.T.; Tanré, D.; Slutsker, I.; et al. MODIS Atmosphere L2 Aerosol Product. In NASA MODIS Adaptive Processing System; Goddard Space Flight Center: Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Herman Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Letu, H.; Ma, R.; Nakajima, T.Y.; Shi, C.; Hashimoto, M.; Nagao, T.M.; Baran, A.J.; Nakajima, T.; Xu, J.; Wang, T.; et al. Surface Solar Radiation Compositions Observed from Himawari-8/9 and Fengyun-4 Series. Bull. Am. Meteorol. Soc. 2023, 104, E1772–E1789. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.L.; Wild, M. Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface Solar Radiation Records (1958–2016). J. Clim. 2019, 32, 5901–5913. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.L.; Wild, M. Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in China. J. Clim. 2018, 31, 4529–4541. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Butler, T.; Keating, T.; Wu, R.; Kaminski, J.; Kuenen, J.; Kurokawa, J.; Chatani, S.; Morikawa, T.; et al. The HTAP_v3 emission mosaic: Merging regional and global monthly emissions (2000–2018) to support air quality modelling and policies. Earth Syst. Sci. Data 2023, 15, 2667–2694. [Google Scholar] [CrossRef]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res.-Atmos. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Schaake, J.C.; Koren, V.I.; Duan, Q.-Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef]
- Sun, X.; Fan, X.; Zhang, T.; Wang, Y.; Wang, Y.; Lyu, D.; Zheng, M. Tempo-Spatial Distributions and Transport Characteristics of Two Dust Events over Northern China in March 2021. Remote Sens. 2022, 14, 5967. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Guo, J.; Xu, L. Impact of the oxidation of SO2 by NO2 on regional sulfate concentrations over the North China Plain. Atmos. Pollut. Res. 2022, 13, 101337. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Y.; Kang, J.; Heal, M.R.; Reis, S.; Wang, M.; Liu, L.; Wang, K.; Yu, S.; Li, P.; et al. Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime. Atmos. Chem. Phys. 2022, 22, 6291–6308. [Google Scholar] [CrossRef]
- Tao, W.-K.; Chen, J.-P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Xia, W.; Wang, Y.; Zhang, G.J.; Wang, B. Light Precipitation rather than Total Precipitation Determines Aerosol Wet Removal. Environ. Sci. Technol. 2024, 58, 19222–19230. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O. Impact of aerosol number concentration on precipitation under different precipitation rates. Meteorol. Appl. 2018, 25, 596–605. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Zhao, G.; Zhang, X.; Xiu, A. Carbonaceous gas and aerosol emissions from biomass burning in China from 2012 to 2021. J. Clean. Prod. 2022, 362, 132199. [Google Scholar] [CrossRef]
- Tiwari, P.; Cohen, J.B.; Lu, L.; Wang, S.; Li, X.; Guan, L.; Liu, Z.; Li, Z.; Qin, K. Multi-platform observations and constraints reveal overlooked urban sources of black carbon in Xuzhou and Dhaka. Commun. Earth Environ. 2025, 6, 38. [Google Scholar] [CrossRef]
- He, C.; Niu, X.; Ye, Z.; Wu, Q.; Liu, L.; Zhao, Y.; Ni, J.; Li, B.; Jin, J. Black carbon pollution in China from 2001 to 2019: Patterns, trends, and drivers. Environ. Pollut. 2023, 324, 121381. [Google Scholar] [CrossRef]
- Tang, W.; Dai, T.; Cheng, Y.; Wang, S.; Liu, Y. A Study of a Severe Spring Dust Event in 2021 over East Asia with WRF-Chem and Multiple Platforms of Observations. Remote Sens. 2022, 14, 3795. [Google Scholar] [CrossRef]
- Hansen, A.D.A.; Rosen, H.; Novakov, T. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef]
- Dehkhoda, N.; Sim, J.; Joo, S.; Shin, S.; Noh, Y. Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sens. 2022, 14, 1510. [Google Scholar] [CrossRef]
- Kim, K.-M.; Kim, S.-W.; Choi, M.; Kim, M.; Kim, J.; Shin, I.; Kim, J.; Chung, C.-Y.; Yeo, H.; Kim, S.-W.; et al. Modeling Asian Dust Storms Using WRF-Chem During the DRAGON-Asia Field Campaign in April 2012. J. Geophys. Res. Atmos. 2021, 126, e2021JD034793. [Google Scholar] [CrossRef]
- Li, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzerall, D.L. Reduction of solar photovoltaic resources due to air pollution in China. Proc. Natl. Acad. Sci. USA 2017, 114, 11867–11872. [Google Scholar] [CrossRef] [PubMed]
- Saide, P.E.; Thompson, G.; Eidhammer, T.; da Silva, A.M.; Pierce, R.B.; Carmichael, G.R. Assessment of biomass burning smoke influence on environmental conditions for multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints. J. Geophys. Res. Atmos. 2016, 121, 10–294. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, T.; Zhang, H.; Xin, J.; Chen, S.; Shi, G.; Nakajima, T. Comparison and evaluation of the simulated annual aerosol characteristics over China with two global aerosol models. Sci. Total Environ. 2021, 763, 143003. [Google Scholar] [CrossRef]
- Jose, R.S.; Pérez, J.L.; González, R.M.; Pecci, J.; Palacios, M. Improving air quality modelling systems by using on-line wild land fire forecasting tools coupled into WRF/Chem simulations over Europe. Urban Clim. 2017, 22, 2–18. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- MacDonald, A.B.; Hossein Mardi, A.; Dadashazar, H.; Azadi Aghdam, M.; Crosbie, E.; Jonsson, H.H.; Flagan, R.C.; Seinfeld, J.H.; Sorooshian, A. On the relationship between cloud water composition and cloud droplet number concentration. Atmos. Chem. Phys. 2020, 20, 7645–7665. [Google Scholar] [CrossRef]
- Xu, J.; Liu, D.; Wang, Z.; Wu, D.; Yu, S.; Wang, Y. A Study of the Characteristics of Vertical Cloud Base Height Distribution over Eastern China. Atmosphere 2019, 10, 307. [Google Scholar] [CrossRef]
- Virtanen, A.; Joutsensaari, J.; Kokkola, H.; Partridge, D.G.; Blichner, S.; Seland, Ø.; Holopainen, E.; Tovazzi, E.; Lipponen, A.; Mikkonen, S.; et al. High sensitivity of cloud formation to aerosol changes. Nat. Geosci. 2025, 18, 289–295. [Google Scholar] [CrossRef]
- Peng, C.; Wang, Y.; Wu, Z.; Chen, L.; Huang, R.-J.; Wang, W.; Wang, Z.; Hu, W.; Zhang, G.; Ge, M.; et al. Tropospheric aerosol hygroscopicity in China. Atmos. Chem. Phys. 2020, 20, 13877–13903. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Harshvardhan; Benkovitz, C.M. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 1784–1789. [Google Scholar] [CrossRef]
- Yang, J.; Yi, B.; Wang, S.; Liu, Y.; Li, Y. Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India. Sci. Rep. 2022, 12, 19671. [Google Scholar] [CrossRef]
- Tzoumanikas, P.; Nikitidou, E.; Bais, A.F.; Kazantzidis, A. The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system. Renew. Energy 2016, 95, 314–322. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Fountoulakis, I.; Bais, A.F.; Psiloglou, B.E.; Papadimitriou, N.; Raptis, I.-P.; Kazantzidis, A.; Kontoes, C.; Hatzaki, M.; Kazadzis, S. Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting. Atmos. Meas. Tech. 2024, 17, 1851–1877. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, T.; Pan, Z. Four-year ground-based observations of the aerosol effects on cloud base height in Wuhan, China. Atmos. Pollut. Res. 2019, 10, 1531–1535. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, B.; Wang, S.; Wang, Y.; Gaudet, B.; Zhu, Y.; Wang, X.; Shen, J.; Li, S.; He, Y.; et al. Increased importance of aerosol–cloud interactions for surface PM2.5 pollution relative to aerosol–radiation interactions in China with the anthropogenic emission reductions. Atmos. Chem. Phys. 2023, 23, 14359–14373. [Google Scholar] [CrossRef]
- Bei, N.; Xiao, B.; Wang, R.; Yang, Y.; Liu, L.; Han, Y.; Li, G. Impacts of aerosol-radiation and aerosol-cloud interactions on a short-term heavy rainfall event—A case study in the Guanzhong Basin, China. EGUsphere 2025, 1–29. [Google Scholar] [CrossRef]
- Jerez, S.; Palacios-Peña, L.; Gutiérrez, C.; Jiménez-Guerrero, P.; López-Romero, J.M.; Pravia-Sarabia, E.; Montávez, J.P. Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols. Geosci. Model Dev. 2021, 14, 1533–1551. [Google Scholar] [CrossRef]
- Song, Y.; Chen, G.; Wang, W.-C. Aerosol Direct Radiative and Cloud Adjustment Effects on Surface Climate over Eastern China: Analyses of WRF Model Simulations. J. Clim. 2019, 32, 1293–1306. [Google Scholar] [CrossRef]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. 1996, 601–609. [Google Scholar] [CrossRef]
- He, J.; Chen, D.; Gu, Y.; Jia, H.; Zhong, K.; Kang, Y. Evaluation of Planetary Boundary Layer Schemes in WRF Model for Simulating Sea-Land Breeze in Shanghai, China. Atmos. Res. 2022, 278, 106337. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Gao, C.; Xiu, A.; Zhang, X.; Tong, Q.; Zhao, H.; Zhang, S.; Yang, G.; Zhang, M. Two-Way Coupled Meteorology and Air Quality Models in Asia: A Systematic Review and Meta-Analysis of Impacts of Aerosol Feedbacks on Meteorology and Air Quality. Atmos. Chem. Phys. 2022, 22, 5265–5329. [Google Scholar] [CrossRef]
- Saide, P.E.; Spak, S.N.; Carmichael, G.R.; Mena-Carrasco, M.A.; Yang, Q.; Howell, S.; Leon, D.C.; Snider, J.R.; Bandy, A.R.; Collett, J.L.; et al. Evaluating WRF-Chem Aerosol Indirect Effects in Southeast Pacific Marine Stratocumulus during VOCALS-REx. Atmos. Chem. Phys. 2012, 12, 3045–3064. [Google Scholar] [CrossRef]
- Poliukhov, A.A.; Chubarova, N.Y.; Volodin, E.M. Impact of Inclusion of the Indirect Effects of Sulfate Aerosol on Radiation and Cloudiness in the INMCM Model. Izv. Atmos. Ocean. Phys. 2022, 58, 486–493. [Google Scholar] [CrossRef]
- Wen, W.; Hua, T.; Liu, L.; Ma, X.; Tharaka, W.A.N.D.; Xing, Y.; Deng, Z.; Shen, L. Assessing Aerosol-Radiation Interaction with WRF-Chem-Solar: Case Study on the Impact of the “Pollution Reduction and Carbon Reduction Synergy” Policy. Atmos. Res. 2024, 308, 107537. [Google Scholar] [CrossRef]
Model Setting | Description | Reference |
---|---|---|
Aerosol | GOCART | [38] |
Microphysics | Thompson and Eidhammer | [39] |
Radiation | RRTMG scheme for SW and LW | [10,11] |
Land Surface | Noah Land Surface Model | [40] |
Cumulus Parameterization | Grell–Freitas ensemble scheme | [41] |
Planetary Boundary Layer | Mellor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2) | [42] |
Dust emission | Air Force Weather Agency (AFWA) | [43] |
Version | Aerosol Dataset | Chemical Interaction | Aerosol–Radiation–Cloud Feedback |
---|---|---|---|
Aero_Aware | Climatological GOCART (2001–2007) | ─ | Disabled (aer_rad_feedback = 0) |
Aero_Couple | Online calculation | √ | Enabled (aer_rad_feedback = 1) |
Regions | N | Experiments | BIAS | RMSE | CORR | IOA |
---|---|---|---|---|---|---|
North Eastern | 4308 | Aero_Aware | 50.11 | 177.73 | 0.78 | 0.87 |
4308 | Aero_Couple | 43.55 | 171.13 | 0.79 | 0.88 | |
Northern | 4982 | Aero_Aware | 91.26 | 185.44 | 0.82 | 0.88 |
4982 | Aero_Couple | 68.91 | 166.23 | 0.84 | 0.90 | |
Eastern | 3883 | Aero_Aware | 30.28 | 179.16 | 0.81 | 0.90 |
3883 | Aero_Couple | 29.83 | 177.00 | 0.81 | 0.90 | |
Southern | 5677 | Aero_Aware | 69.23 | 221.26 | 0.77 | 0.86 |
5677 | Aero_Couple | 78.13 | 227.37 | 0.76 | 0.85 | |
Central | 10889 | Aero_Aware | 36.51 | 216.31 | 0.73 | 0.85 |
10889 | Aero_Couple | 23.72 | 207.47 | 0.73 | 0.85 | |
Western | 7612 | Aero_Aware | 69.01 | 219.18 | 0.75 | 0.85 |
7612 | Aero_Couple | 51.09 | 206.44 | 0.76 | 0.87 | |
Tibetan | 2343 | Aero_Aware | 99.65 | 286.76 | 0.68 | 0.81 |
2343 | Aero_Couple | 99.38 | 286.37 | 0.69 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, G.; Dai, T.; Xia, X.; Husi, L.; Ma, R.; Li, C. Online-Coupled Aerosol Effects on Cloud Microphysics and Surface Solar Irradiance in WRF-Solar. Remote Sens. 2025, 17, 2829. https://doi.org/10.3390/rs17162829
Wang S, Huang G, Dai T, Xia X, Husi L, Ma R, Li C. Online-Coupled Aerosol Effects on Cloud Microphysics and Surface Solar Irradiance in WRF-Solar. Remote Sensing. 2025; 17(16):2829. https://doi.org/10.3390/rs17162829
Chicago/Turabian StyleWang, Su, Gang Huang, Tie Dai, Xiang’ao Xia, Letu Husi, Run Ma, and Cuina Li. 2025. "Online-Coupled Aerosol Effects on Cloud Microphysics and Surface Solar Irradiance in WRF-Solar" Remote Sensing 17, no. 16: 2829. https://doi.org/10.3390/rs17162829
APA StyleWang, S., Huang, G., Dai, T., Xia, X., Husi, L., Ma, R., & Li, C. (2025). Online-Coupled Aerosol Effects on Cloud Microphysics and Surface Solar Irradiance in WRF-Solar. Remote Sensing, 17(16), 2829. https://doi.org/10.3390/rs17162829