Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2
Abstract
1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Data Sources
2.3. Workflow Overview
2.4. Water Level Estimation
2.5. Data Integration Methodology
2.6. Trend Analysis
3. Results
3.1. Analysis of Climate Change in the Lake District
3.2. Trends in Lake Changes
3.2.1. Changes in the Lake from 1991 to 2020
3.2.2. The Relationship Between Lake Level and Area
3.3. Lake Response to Climate Change
3.3.1. Response of Lake Levels to Climate Change
3.3.2. Response of Lake Area to Climate Change
4. Discussion
4.1. Advantages and Limitations of Data Integration and Methodology
4.2. Relationship Between Lake Level and Area Changes and Its Influencing Factors
4.3. Ecological and Societal Implications
4.4. Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Chen, F.; Zhao, H.; Wang, J.; Wang, N. Recent changes of glacial lakes in the high mountain asia and its potential controlling factors analysis. Remote Sens. 2021, 13, 3757. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote sensing of alpine lake water environment changes on the tibetan plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Shukla, A.; Garg, P.K.; Srivastava, S. Evolution of glacial and high-altitude lakes in the sikkim, eastern himalaya over the past four decades (1975–2017). Front. Environ. Sci. 2018, 6, 81. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Andersen, O.B. Improvements in mountain lake monitoring from satellite altimetry over the past 30 years—Lessons learned from tibetan lakes. Remote Sens. Environ. 2023, 295, 113702. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Sørensen, L.S. Implications of changing scattering properties on greenland ice sheet volume change from cryosat-2 altimetry. Remote Sens. Environ. 2017, 190, 207–216. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Z.; Rose, S.K.; Andersen, O.B.; Zhang, S.; Jin, T. A new arctic mss model derived from combined cryosat-2 and icesat observations. Int. J. Digit. Earth 2022, 15, 2202–2222. [Google Scholar] [CrossRef]
- Morris, A.; Moholdt, G.; Gray, L.; Schuler, T.V.; Eiken, T. Cryosat-2 interferometric mode calibration and validation: A case study from the austfonna ice cap, svalbard. Remote Sens. Environ. 2022, 269, 112805. [Google Scholar] [CrossRef]
- Simard, M.; Denbina, M.; Marshak, C.; Neumann, M. A global evaluation of radar-derived digital elevation models: SRTM, NASADEM, and GLO-30. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007672. [Google Scholar] [CrossRef]
- Lucas, S.; Johannessen, J.A.; Cancet, M.; Pettersson, L.H.; Esau, I.; Rheinlænder, J.W.; Ardhuin, F.; Chapron, B.; Korosov, A.; Collard, F.; et al. Knowledge gaps and impact of future satellite missions to facilitate monitoring of changes in the arctic ocean. Remote Sens. 2023, 15, 2852. [Google Scholar] [CrossRef]
- Abdalla, S.; Abdeh Kolahchi, A.; Ablain, M.; Adusumilli, S.; Aich Bhowmick, S.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Shepherd, A.; Gilbert, L.; Muir, A.S.; Konrad, H.; McMillan, M.; Slater, T.; Briggs, K.H.; Sundal, A.V.; Hogg, A.E.; Engdahl, M.E. Trends in antarctic ice sheet elevation and mass. Geophys. Res. Lett. 2019, 46, 8174–8183. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.S.; Simonsen, S.B.; Forsberg, R.; Khvorostovsky, K.; Meister, R.; Engdahl, M.E. 25 years of elevation changes of the greenland ice sheet from ers, envisat, and cryosat-2 radar altimetry. Earth. Planet. Sci. Lett. 2018, 495, 234–241. [Google Scholar] [CrossRef]
- Bocquet, M.; Fleury, S.; Piras, F.; Rinne, E.; Sallila, H.; Garnier, F.; Rémy, F. Arctic sea ice radar freeboard retrieval from ers-2 using altimetry: Toward sea ice thickness observation from 1995 to 2021. EGUsphere 2022, 17, 3013–3039. [Google Scholar]
- Du, W.; Pan, Y.; Li, J.; Bao, A.; Chai, H.; Yuan, Y.; Cheng, C. Glacier retreat leads to the expansion of alpine lake karakul observed via remote sensing water volume time series reconstruction. Atmosphere 2023, 14, 1772. [Google Scholar] [CrossRef]
- Ni, A.; Nurtayev, B.; Petrov, M.; Tikhanovskaya, A.; Tomashevskaya, I. The share of a glacial feeding in water balance of aral sea and karakul lake. J. Mar. Syst. 2004, 47, 143–146. [Google Scholar] [CrossRef]
- Aichner, B.; Makhmudov, Z.; Rajabov, I.; Zhang, Q.; Pausata, F.S.; Werner, M.; Heinecke, L.; Kuessner, M.L.; Feakins, S.J.; Sachse, D. Hydroclimate in the pamirs was driven by changes in precipitation-evaporation seasonality since the last glacial period. Geophys. Res. Lett. 2019, 46, 13972–13983. [Google Scholar] [CrossRef]
- Kossieris, S.; Tsiakos, V.; Tsimiklis, G.; Amditis, A. Inland water level monitoring from satellite observations: A scoping review of current advances and future opportunities. Remote Sens. 2024, 16, 1181. [Google Scholar] [CrossRef]
- Mischke, S.; Rajabov, I.; Mustaeva, N.; Zhang, C.; Herzschuh, U.; Boomer, I.; Brown, E.T.; Andersen, N.; Myrbo, A.; Ito, E. Modern hydrology and late holocene history of lake karakul, eastern pamirs (tajikistan): A reconnaissance study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 289, 10–24. [Google Scholar] [CrossRef]
- Rakhimovich, D.R.; Negmatovich, R.R.; Safarovna, K.L. Water resources of tajikistan. Global warming or anomalous phenomena on fedchenko glacier? Int. Agric. J. 2019, 62, 26–34. [Google Scholar]
- Chen, S.; Chevalier, M.-L.; Li, H. Tectonic and climatic controls on topographic spatial variability across the pamir plateau and implications for drainage evolution. J. Asian Earth Sci. 2024, 276, 106333. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, X.; Gong, P.; Huang, H.; Li, Z.; Li, X. Earth science applications of icesat/glas: A review. Int. J. Remote Sens. 2011, 32, 8837–8864. [Google Scholar] [CrossRef]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in china’s large lakes determined from icesat/glas data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, H.; Ma, Y.; Yang, J.; Liu, X.; Wang, X. Global estimation and assessment of monthly lake/reservoir water level changes using icesat-2 atl13 products. Remote Sens. 2021, 13, 2744. [Google Scholar] [CrossRef]
- Jiang, L.; Schneider, R.; Andersen, O.B.; Bauer-Gottwein, P. Cryosat-2 altimetry applications over rivers and lakes. Water 2017, 9, 211. [Google Scholar] [CrossRef]
- Gourmelen, N.; Escorihuela, M.; Shepherd, A.; Foresta, L.; Muir, A.; Garcia-Mondéjar, A.; Roca, M.; Baker, S.; Drinkwater, M.R. Cryosat-2 swath interferometric altimetry for mapping ice elevation and elevation change. Adv. Space Res. 2018, 62, 1226–1242. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ers/envisat deformation time-series generation at full spatial resolution via the extended sbas technique. Int. J. Remote Sens. 2012, 33, 4756–4783. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Tenzer, R.; Hirt, C.; Claessens, S.; Novák, P. Spatial and spectral representations of the geoid-to-quasigeoid correction. Surv. Geophys. 2015, 36, 627–658. [Google Scholar] [CrossRef]
- O’Loughlin, F.E.; Neal, J.; Yamazaki, D.; Bates, P.D. Icesat-derived inland water surface spot heights. Water Resour. Res. 2016, 52, 3276–3284. [Google Scholar] [CrossRef]
- Fons, S.; Kurtz, N.T.; Bagnardi, M.; Petty, A.A.; Tilling, R. Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from ICESat-2. Earth Space Sci. 2021, 8, e2021EA001728. [Google Scholar] [CrossRef]
- Knoche, M.; Merz, R.; Lindner, M.; Weise, S.M. Bridging glaciological and hydrological trends in the pamir mountains, central asia. Water 2017, 9, 422. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Yao, X.; Duan, H.; Zhang, C.; Wang, S.; Niu, S.; Yan, X. A review of karakoram glacier anomalies in high mountains asia. Water 2023, 15, 3215. [Google Scholar] [CrossRef]
- Mętrak, M.; Szwarczewski, P.; Bińka, K.; Rojan, E.; Karasiński, J.; Górecki, G.; Suska-Malawska, M. Late holocene development of lake rangkul (eastern pamir, tajikistan) and its response to regional climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 521, 99–113. [Google Scholar] [CrossRef]
- Mętrak, M.; Chachulski, Ł.; Chibowski, P.; Jasser, I.; Khomutovska, N.; Rojan, E.; Sulwiński, M.; Wilk, M.; Suska-Malawska, M. Rangkul-shorkul lake system (eastern pamir, tajikistan). In Aquatic Biomes; Elsevier: Amsterdam, The Netherlands, 2025; pp. 89–104. [Google Scholar]
- Komatsu, T.; Watanabe, T.; Hirakawa, K. A framework for late quaternary lake-level fluctuations in lake karakul, eastern pamir, focusing on lake–glacier landform interaction. Geomorphology 2010, 119, 198–211. [Google Scholar] [CrossRef]
- Huang, C.; Lai, Z.; Liu, X.; Madsen, D. Lake-level history of qinghai lake on the ne tibetan plateau and its implications for asian monsoon pattern—A review. Quat. Sci. Rev. 2021, 273, 107258. [Google Scholar] [CrossRef]
- Liu, X.; Lai, Z.; Madsen, D.; Yu, L.; Liu, K.; Zhang, J. Lake level variations of qinghai lake in northeastern qinghai-tibetan plateau since 3.7 ka based on osl dating. Quat. Int. 2011, 236, 57–64. [Google Scholar] [CrossRef]
- Sima, S.; Rosenberg, D.E.; Wurtsbaugh, W.A.; Null, S.E.; Kettenring, K.M. Managing lake urmia, iran for diverse restoration objectives: Moving beyond a uniform target lake level. J. Hydrol. Reg. Stud. 2021, 35, 100812. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Sima, S. Contrasting management and fates of two sister lakes: Great salt lake (USA) and lake urmia (iran). Water 2022, 14, 3005. [Google Scholar] [CrossRef]
- Goerlich, F.; Bolch, T.; Paul, F. More dynamic than expected: An updated survey of surging glaciers in the pamir. Earth Syst. Sci. Data Discuss. 2020, 12, 3161–3176. [Google Scholar] [CrossRef]
- Abuduwaili, J.; Issanova, G.; Saparov, G. Water resources in tajikistan. In Hydrology and Limnology of Central Asia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 367–373. [Google Scholar]
- Capriles, J.M.; Moore, K.M.; Domic, A.I.; Hastorf, C.A. Fishing and environmental change during the emergence of social complexity in the lake titicaca basin. J. Anthropol. Archaeol. 2014, 34, 66–77. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, D.; Zhou, Y.; Nian, Y.; Ren, S.; Ren, W.; Zhu, Z.; Tang, Z.; Li, X. Glacier mass change and evolution of petrov lake in the ak-shyirak massif, central tien shan, from 1973 to 2023 using multisource satellite data. Remote Sens. Environ. 2024, 315, 114437. [Google Scholar] [CrossRef]
Z | p | Sslope | Trend | |
---|---|---|---|---|
MAT | 1.054 | 0.292 | 0.013 | no trend |
MAP | −1.156 | 0.248 | −0.179 | no trend |
MAET | 1.530 | 0.126 | 0.002 | no trend |
MASD | −1.530 | 0.126 | −0.736 | no trend |
Time | Area/km2 | Annual Change in Area/km2 | K | Time | Area/km2 | Annual Change in Area/km2 | K |
---|---|---|---|---|---|---|---|
1991 | 387.95 | 2.62 | 0.68% | 2006 | 402.85 | 2.25 | 0.56% |
1992 | 390.57 | 2.62 | 0.67% | 2007 | 403.09 | −0.11 | −0.03% |
1993 | 393.18 | 2.62 | 0.67% | 2008 | 403.58 | 0.60 | 0.15% |
1994 | 395.72 | 2.62 | 0.67% | 2009 | 402.78 | −1.00 | −0.25% |
1995 | 397.67 | 1.87 | 0.47% | 2010 | 404.74 | 1.96 | 0.49% |
1996 | 398.80 | 1.87 | 0.47% | 2011 | 404.78 | 0.12 | 0.03% |
1997 | 402.80 | 3.68 | 0.92% | 2012 | 407.98 | 3.20 | 0.79% |
1998 | 403.39 | 0.17 | 0.04% | 2013 | 409.19 | 1.34 | 0.33% |
1999 | 406.97 | 3.58 | 0.89% | 2014 | 409.76 | 0.79 | 0.19% |
2000 | 406.56 | −0.41 | −0.10% | 2015 | 412.14 | 2.16 | 0.53% |
2001 | 402.71 | −3.85 | −0.95% | 2016 | 410.69 | −1.45 | −0.35% |
2002 | 399.66 | −3.05 | −0.76% | 2017 | 409.93 | −0.76 | −0.19% |
2003 | 398.61 | −1.05 | −0.26% | 2018 | 414.03 | 4.10 | 1.00% |
2004 | 398.37 | −0.24 | 0.62% | 2019 | 414.82 | 0.79 | 0.19% |
2005 | 400.85 | 2.48 | 0.56% | 2020 | 414.83 | 0.01 | 0.00% |
Level | MAT | MAP | MAET | MASD | ||
---|---|---|---|---|---|---|
Level | Correlation | 1 | −0.130 | 0.041 | 0.121 | 0.167 |
Significance (two-tailed) | 0.500 | 0.831 | 0.531 | 0.388 |
Area | MAT | MAP | MAET | MASD | ||
---|---|---|---|---|---|---|
Area | Correlation | 1 | 0.083 | −0.115 | 0.137 | −0.376 * |
Significance (two-tailed) | 0.661 | 0.544 | 0.470 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ma, P.; Wang, X.; Hou, J.; Zhang, Q.; Guo, Y.; Xu, Z.; Wang, Y.; Abdulhamid, K. Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2. Remote Sens. 2025, 17, 2816. https://doi.org/10.3390/rs17162816
Zhang Z, Ma P, Wang X, Hou J, Zhang Q, Guo Y, Xu Z, Wang Y, Abdulhamid K. Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2. Remote Sensing. 2025; 17(16):2816. https://doi.org/10.3390/rs17162816
Chicago/Turabian StyleZhang, Zihui, Ping Ma, Xiaofei Wang, Jiayu Hou, Qinqin Zhang, Yuchuan Guo, Zhonglin Xu, Yao Wang, and Kayumov Abdulhamid. 2025. "Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2" Remote Sensing 17, no. 16: 2816. https://doi.org/10.3390/rs17162816
APA StyleZhang, Z., Ma, P., Wang, X., Hou, J., Zhang, Q., Guo, Y., Xu, Z., Wang, Y., & Abdulhamid, K. (2025). Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2. Remote Sensing, 17(16), 2816. https://doi.org/10.3390/rs17162816