Determination of Trends in GPS Time Series Using Complementary Ensemble Empirical Mode Decomposition
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Complementary Ensemble Empirical Mode Decomposition
- Generating a pair of signals by adding and subtracting white noise ε(t) from the original time series
- Separate decomposition of signals and using the EMD method as follows:
- (a)
- Identification of extrema at and ;
- (b)
- Determination of upper and lower envelope, by separately connecting all local minima and maxima using cubic spline line;
- (c)
- Determination of envelope mean and and first components and as follows:
- (d)
- Separation of the first component from the data
2.3. Bootstrap
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPS | Global Positioning System |
CEEMD | Complementary Ensemble Empirical Mode Decomposition |
NGL | Nevada Geodetic Laboratory |
GNSSs | Global Navigation Satellite Systems |
RMSE | Root Mean Square Error |
MIDAS | Median Interannual Difference Adjusted for Skewness |
MLE | Maximum Likelihood Estimation |
SSA | Singular Spectrum Analysis |
PPP | Precise Point Positioning |
EPN | EUREF Permanent Network |
MAD | Median Absolute Deviation |
EMD | Empirical Mode Decomposition |
IMFs | Intrinsic Mode Functions |
ITRF | International Terrestrial Reference Frame |
LSs | Last Squares |
ITRS | International Terrestrial Reference System |
PSD | Post-Seismic Deformation |
USGS | U. S. Geological Survey |
References
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A new global mode of Earth deformation: Seasonal cycle detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef]
- Banerjee, P.; Pollitz, F.F.; Nagarajan, B.; Burgmann, R. Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull. Seismol. Soc. Am. 2007, 97, S86–S102. [Google Scholar] [CrossRef]
- Tregoning, P.; Burgette, R.; McClusky, S.C.; Lejeune, S.; Watson, C.S.; McQueen, H. A decade of horizontal deformation from great earthquakes. J. Geophys. Res. 2013, 118, 2371–2381. [Google Scholar] [CrossRef]
- Nistor, S.; Suba, N.S.; El-Mowafy, A.; Apollo, M.; Malkin, Z.; Nastase, E.I.; Kudrys, J.; Maciuk, K. Implication between Geophysical Events and the Variation of Seasonal Signal Determined in GNSS Position Time Series. Remote Sens. 2021, 13, 3478. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.K.; Miyazaki, S.I. Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res. Solid Earth 2002, 107, ETG-9. [Google Scholar] [CrossRef]
- Kermarrec, G.; Maddanu, F.; Klos, A.; Proietti, T.; Bogusz, J. Modeling trends and periodic components in geodetic time series: A unified approach. J. Geod. 2024, 98, 17. [Google Scholar] [CrossRef]
- Oelsmann, J.; Passaro, M.; Sánchez, L.; Dettmering, D.; Schwatke, C.; Seitz, F. Bayesian modelling of piecewise trends and discontinuities to improve the estimation of coastal vertical land motion: DiscoTimeS: A method to detect change points in GNSS, satellite altimetry, tide gauge and other geophysical time series. J. Geod. 2022, 96, 62. [Google Scholar] [CrossRef]
- Klos, A.; Kusche, J.; Fenoglio-Marc, L.; Bos, M.S.; Bogusz, J. Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut. 2019, 23, 102. [Google Scholar] [CrossRef]
- Bogusz, J. Geodetic aspects of GPS permanent station nonlinearity studies. Acta Geodyn. Geomater. 2015, 12, 180. [Google Scholar] [CrossRef]
- Hobbs, B.; Ord, A. Nonlinear dynamical analysis of GNSS data: Quantification, precursors and synchronisation. Prog. Earth Planet. Sci. 2018, 5, 36. [Google Scholar] [CrossRef]
- Blewitt, G.; Kreemer, C.; Hammond, W.C.; Gazeaux, J. MIDAS robust trend estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth 2016, 121, 2054–2068.b. [Google Scholar] [CrossRef]
- Williams, S.D.P. CATS: GPS coordinate time series analysis software. GPS Solut. 2008, 12, 147–153. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missingdata. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef]
- Heflin, M.; Donnellan, A.; Parker, J.; Lyzenga, G.; Moore, A.; Ludwig, L.G.; Rundle, J.; Wang, J.; Pierce, M. Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: Illuminating nonlinear Salton Trough deformation. Earth Space Sci. 2020, 7, e2019EA000644. [Google Scholar] [CrossRef]
- Bos, M.S.; Bastos, L.; Fernandes, R.M.S. The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J. Geodyn. 2010, 49, 205–209. [Google Scholar] [CrossRef]
- Klos, A.; Bos, M.S.; Bogusz, J. Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solut. 2018, 22, 21. [Google Scholar] [CrossRef]
- Chen, Q.; van Dam, T.; Sneeuw, N.; Collilieux, X.; Weigelt, M.; Rebischung, P. Singular spectrum analysis for modeling seasonal signals from GPS time series. J. Geodyn. 2013, 72, 25–35. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Ji, K.; Shen, Y.; Wang, F. Signal Extraction from GNSS Position Time Series Using Weighted Wavelet Analysis. Remote Sens. 2020, 12, 992. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Kontny, B. Identification of the Noise Model in the Time Series of GNSS Stations Coordinates Using Wavelet Analysis. Remote Sens. 2018, 10, 1611. [Google Scholar] [CrossRef]
- Gruszczynska, M.; Klos, A.; Gruszczynski, M.; Bogusz, J. Investigation of time-changeable seasonal components in the GPS height time series: A case study for Central Europe. Acta. Geodyn. Geomater. 2016, 13, 281–289. [Google Scholar] [CrossRef]
- Khazraei, S.M.; Amiri-Simkooei, A.R. On the application of Monte Carlo singular spectrum analysis to GPS position time series. J. Geod. 2019, 93, 1401–1418. [Google Scholar] [CrossRef]
- Ji, K.; Shen, Y.; Chen, Q.; Wang, F. Extended singular spectrum analysis for processing incomplete heterogeneous geodetic time series. J. Geod. 2023, 97, 74. [Google Scholar] [CrossRef]
- Ji, K.; Shen, Y.; Wang, F.; Chen, Q. An efficient improved singular spectrum analysis for processing GNSS position time series with missing data. Geophys. J. Int. 2025, 240, 189–200. [Google Scholar] [CrossRef]
- Wnęk, A.; Kudas, D. Modeling seasonal oscillations in GNSS time series with Complementary Ensemble Empirical Mode Decomposition. GPS Solut. 2022, 26, 101. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.; Yi, L.; Fang, R. A data-driven approach for denoising GNSS position time series. J. Geod. 2018, 92, 905–922. [Google Scholar] [CrossRef]
- Li, Y.; Han, L.; Yi, L.; Zhong, S.; Chen, C. Feature extraction and improved denoising method for nonlinear and nonstationary high-rate GNSS coseismic displacements applied to earthquake focal mechanism inversion of the El Mayor-Cucapah earthquake. Adv. Space Res. 2021, 68, 3971–3991. [Google Scholar] [CrossRef]
- Montillet, J.P.; Tregoning, P.; McClusky, S.; Yu, K. Extracting white noise statistics in GPS coordinate time series. IEEE Geosci. Remote Sens. Lett. 2012, 10, 563–567. [Google Scholar] [CrossRef]
- Niu, Y.; Ye, Y.; Zhao, W.; Shu, J. Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CF-CEEMD method. J. Civ. Struct. Health Monit. 2021, 11, 35–48. [Google Scholar] [CrossRef]
- Yang, B.; Yang, Z.; Tian, Z.; Liang, P. Weakening the Flicker Noise in GPS Vertical Coordinate Time Series Using Hybrid Approaches. Remote Sens. 2023, 15, 1716. [Google Scholar] [CrossRef]
- Li, Y.; Han, L.; Liu, X. Accuracy Enhancement and Feature Extraction for GNSS Daily Time Series Using Adaptive CEEMD-Multi-PCA-Based Filter. Remote Sens. 2023, 15, 1902. [Google Scholar] [CrossRef]
- Wnęk, A.; Kudas, D. Application of combination of denoising methods and Complementary Ensemble Empirical Mode Decomposition in GNSS time series analysis. GPS Solut. 2025, 29, 141. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99, e2020943118. [Google Scholar] [CrossRef]
- Klein, J.; Valkama, M.; Staudt, M.; Schmidt-Thomé, P.; Kallio, H. ESPON-TITAN: Territorial patterns of natural hazards in Europe. Nat. Hazards 2024, 1–23. [Google Scholar] [CrossRef]
- U. S. Geological Survey. Search Earthquake Catalog. Available online: https://earthquake.usgs.gov/earthquakes/search (accessed on 14 July 2025).
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1027. [Google Scholar] [CrossRef]
- Gazeaux, J.; Williams, S.; King, M.; Bos, M.; Dach, R.; Deo, M.; Moore, A.W.; Ostini, L.; Petrie, E.; Roggero, M.; et al. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. J. Geophys. Res. Solid Earth 2013, 118, 2397–2407. [Google Scholar] [CrossRef]
- Tretyak, K.; Dosyn, S. Study of vertical movements of the European crust using tide gauge and GNSS observations. Rep. Geod. Geoinform. 2014, 97, 112–131. [Google Scholar] [CrossRef]
- NGL Steps 2024. Available online: http://geodesy.unr.edu/NGLStationPages/steps.txt (accessed on 20 April 2025).
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, Y.; Schmitt, F.G.; Lu, Z.; Liu, Y. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J. Hydrol. 2009, 373, 103–111. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Métivier, L.; Chanard, K. ITRF2020: An augmented reference frame refining the modeling of nonlinear station motions. J. Geod. 2023, 97, 47. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, Version: 23.2.0.2485118 (R2023b) Update 6; The MathWorks Inc.: Natick, MA, USA, 2023; Available online: https://www.mathworks.com (accessed on 20 April 2025).
- Herring, T.A.; Melbourne, T.I.; Murray, M.H.; Floyd, M.A.; Szeliga, W.M.; King, R.W.; Phillips, D.A.; Puskas, C.M.; Santillan, M.; Wang, L. Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Rev. Geophys. 2016, 54, 759–808. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.-P.; Fernandes, R.; Melbourne, T.; Jiang, W.; Li, W. Spatial Variations of Stochastic Noise Properties in GPS Time Series. Remote Sens. 2021, 13, 4534. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Rapinski, J. Verification of a GNSS time series discontinuity detection approach in support of the estimation of vertical crustal movements. ISPRS Int. J. Geo-Inf. 2018, 7, 149. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Maerten, F. Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys. Res. Lett. 2006, 33, L07307. [Google Scholar] [CrossRef]
- Tobita, M. Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake. Earth Planets Space 2016, 68, 41. [Google Scholar] [CrossRef]
- Williams, S.D.P.; Bock, Y.; Fang, P.; Jamason, P.; Nikolaidis, R.M.; Prawirodirdjo, L.; Miller, M.; Johnson, D.J. Error analysis of continuous GPS position time series. J. Geophys. Res. 2004, 109, B03412. [Google Scholar] [CrossRef]
- Montillet, J.P.; Williams, S.D.P.; Koulali, A.; McClusky, S.C. Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys. J. Int. 2015, 200, 1207–1221. [Google Scholar] [CrossRef]
- Clarke, D.; Brenguier, F.; Froger, J.-L.; Shapiro, N.M.; Peltier, A.; Staudacher, T. Timing of a large volcanic flank movement at Piton de la Fournaise Volcano using noise-based seismic monitoring and ground deformation measurements. Geophys. J. Int. 2013, 195, 1132–1140. [Google Scholar] [CrossRef]
- Zhang, P.; Dai, Y.; Zhang, H.; Wang, C.; Zhang, Y. Combining CEEMD and recursive least square for the extraction of time-varying seismic wavelets. J. Appl. Geophys. 2019, 170, 103854. [Google Scholar] [CrossRef]
- Shao, Q.; Li, W.; Hou, G.; Han, G.; Wu, X. Mid-term simultaneous spatiotemporal prediction of sea surface height anomaly and sea surface temperature using satellite data in the South China Sea. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1501705. [Google Scholar] [CrossRef]
Station ID | Start Date | End Date | Time Series Length [Years] | Completeness | Longest Period of Missing Data [Days] | |
---|---|---|---|---|---|---|
1 | AQUI | 2009.8810 | 2024.5343 | 14.6533 | 99% | 38 |
2 | AUT1 | 2005.2458 | 2021.9552 | 16.7095 | 97% | 35 |
3 | BOLG | 2004.6790 | 2024.5343 | 19.8553 | 97% | 19 |
4 | DUB2 | 2011.9755 | 2024.5343 | 12.5588 | 94% | 46 |
5 | DUTH | 2008.7010 | 2022.9217 | 14.2207 | 98% | 35 |
6 | GARI | 2009.3964 | 2024.5343 | 15.1379 | 97% | 34 |
7 | GENO | 2010.0973 | 2024.5343 | 14.4370 | 98% | 22 |
8 | IGMI | 2006.9405 | 2024.5343 | 17.5938 | 95% | 45 |
9 | ISTA | 2007.8605 | 2024.3837 | 16.5233 | 99% | 11 |
10 | IZMI | 2009.0049 | 2018.8586 | 9.8537 | 98% | 7 |
11 | MOPS | 2007.2581 | 2016.8682 | 9.6101 | 99% | 11 |
12 | NICO | 2007.9453 | 2024.5343 | 16.5890 | 99% | 16 |
13 | NOA1 | 2006.6804 | 2022.4672 | 15.7868 | 98% | 16 |
14 | NOT1 | 2000.6871 | 2019.5541 | 18.8669 | 96% | 26 |
15 | ORID | 2000.5283 | 2022.0702 | 21.5419 | 95% | 31 |
16 | PADO | 2009.6510 | 2017.9250 | 8.2740 | 98% | 4 |
17 | PAT0 | 2009.0706 | 2024.5508 | 15.4801 | 97% | 35 |
18 | PORE | 2014.6477 | 2024.5343 | 9.8866 | 95% | 48 |
19 | PRAT | 1998.3462 | 2021.1722 | 22.8259 | 94% | 27 |
20 | TORI | 1997.2483 | 2024.5343 | 27.2860 | 95% | 32 |
21 | TUBI | 1999.8439 | 2020.0715 | 20.2277 | 97% | 25 |
22 | TUC2 | 2004.7365 | 2024.5343 | 19.7978 | 97% | 35 |
23 | USAL | 2010.1521 | 2024.5343 | 14.3822 | 98% | 9 |
24 | VEN1 | 2009.3690 | 2024.5343 | 15.1653 | 99% | 9 |
25 | ZADA | 2011.7182 | 2024.5343 | 12.8162 | 95% | 47 |
Station ID | Slope of Curve [mm/Year] | Standard Error of the LS Trend Fit [mm] | RMSE [mm] | |||
---|---|---|---|---|---|---|
MIDAS [11] | LS | LS of CEEMD | ||||
1 | AQUI | −0.460 | −0.722 | −0.644 | 6.04 | 0.90 |
2 | AUT1 | −1.356 | −1.775 | −1.616 | 5.28 | 0.43 |
−3.884 | −3.834 | 5.26 | 0.67 | |||
3 | BOLG | −1.032 | 3.084 | 4.756 | 9.43 | 2.57 |
−1.101 | −1.262 | 7.52 | 1.66 | |||
−2.543 | −2.486 | 6.31 | 1.21 | |||
4 | DUB2 | −1.567 | −1.114 | −0.956 | 5.47 | 1.08 |
5 | DUTH | 0.463 | 0.047 | 0.061 | 6.10 | 1.45 |
6 | GARI | −3.213 | −3.965 | −3.869 | 5.68 | 1.43 |
−2.404 | −2.281 | 6.02 | 1.26 | |||
7 | GENO | −0.624 | −0.493 | −0.463 | 5.82 | 0.53 |
8 | IGMI | −0.747 | −0.193 | −0.158 | 5.71 | 1.23 |
9 | ISTA | 0.502 | −0.138 | −0.245 | 6.38 | 0.44 |
10 | IZMI | −0.306 | −0.120 | −0.100 | 6.08 | 1.08 |
11 | MOPS | −3.182 | −2.159 | −2.059 | 6.97 | 2.96 |
−2.748 | −2.774 | 5.87 | 2.51 | |||
12 | NICO | 0.000 | −0.348 | −0.324 | 5.46 | 0.61 |
13 | NOA1 | 0.729 | 0.092 | 0.103 | 6.69 | 0.65 |
14 | NOT1 | −0.796 | −1.154 | −1.156 | 6.57 | 0.88 |
15 | ORID | 0.793 | 0.126 | −0.009 | 6.66 | 0.57 |
16 | PADO | −0.473 | −0.235 | −0.230 | 4.74 | 0.91 |
−0.897 | −1.157 | 4.67 | 0.61 | |||
17 | PAT0 | −0.469 | −0.678 | −0.538 | 5.66 | 0.42 |
18 | PORE | −1.128 | 0.908 | 0.872 | 6.37 | 2.04 |
19 | PRAT | −0.623 | −0.404 | −0.581 | 6.06 | 0.93 |
−0.550 | −0.585 | 5.35 | 0.61 | |||
20 | TORI | −0.019 | 0.810 | 0.710 | 6.36 | 0.93 |
−0.562 | 0.694 | 5.63 | 1.80 | |||
0.590 | 0.550 | 5.70 | 1.00 | |||
21 | TUBI | 0.179 | −1.163 | −1.148 | 5.86 | 1.35 |
22 | TUC2 | 2.868 | 0.078 | 0.121 | 4.56 | 0.10 |
−1.174 | −1.220 | 5.46 | 0.71 | |||
−0.762 | −0.744 | 5.40 | 1.44 | |||
23 | USAL | 0.106 | −0.560 | −0.206 | 4.90 | 0.27 |
24 | VEN1 | −1.707 | −1.919 | −1.836 | 5.18 | 1.09 |
−1.224 | −0.895 | 5.39 | 0.59 | |||
25 | ZADA | −1.928 | −0.317 | −0.303 | 5.37 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnęk, A.; Kudas, D. Determination of Trends in GPS Time Series Using Complementary Ensemble Empirical Mode Decomposition. Remote Sens. 2025, 17, 2802. https://doi.org/10.3390/rs17162802
Wnęk A, Kudas D. Determination of Trends in GPS Time Series Using Complementary Ensemble Empirical Mode Decomposition. Remote Sensing. 2025; 17(16):2802. https://doi.org/10.3390/rs17162802
Chicago/Turabian StyleWnęk, Agnieszka, and Dawid Kudas. 2025. "Determination of Trends in GPS Time Series Using Complementary Ensemble Empirical Mode Decomposition" Remote Sensing 17, no. 16: 2802. https://doi.org/10.3390/rs17162802
APA StyleWnęk, A., & Kudas, D. (2025). Determination of Trends in GPS Time Series Using Complementary Ensemble Empirical Mode Decomposition. Remote Sensing, 17(16), 2802. https://doi.org/10.3390/rs17162802