Groundwater Crisis in the Eastern Loess Plateau: Evolution of Storage, Linkages with the North China Plain, and Driving Mechanisms
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. GRACE Data
2.2.2. GLDAS Data
2.2.3. Groundwater Monitoring Data
2.2.4. Other Data
3. Research Methods
3.1. Methods for Estimating Changes in GWS
3.2. Mann–Kendall Test
3.3. Sen’s Slope Estimator
3.4. Engle–Granger Cointegration Test
3.5. Granger Causality Test
3.6. Relative Contribution
4. Results
4.1. Reliability Test of GWS Data Based on GRACE Estimation
4.2. Interannual Trend of GWS Changes
4.3. Intra-Annual Variations in GWS
4.4. Spatial Changes in GWS
4.5. Linkage Between GWS in the North China Plain and Shanxi Province
4.6. Influencing Factors of GWS Evolution in Shanxi Province
5. Discussion
5.1. Evaluating the Impacts of Climate Change, Human Activities, and Groundwater Evolution in the North China Plain on GWS Trends in Shanxi Province
5.2. Disregarding External Influences May Lead to Overestimation of Local Climate or Human Activities Impacts on GWS
5.3. Policy Suggestions
5.4. Limitations
6. Conclusions
- (1)
- Based on GRACE–GLDAS data, GWS in Shanxi Province exhibited a clear declining trend from 2003 to 2023, with an average annual decrease of −17.27 ± 1.4 mm/yr, resulting in a cumulative loss of approximately 56.58 km3 over the study period. Spatially, the most significant groundwater depletion occurred in the southeastern region of the province.
- (2)
- Correlation analysis of annual and monthly GWS data between Shanxi Province and the North China Plain reveals strong synchronization between the two regions. The monthly correlation coefficient reached 0.89, while the annual coefficient was 0.97, indicating high consistency in long-term trends. A distinct groundwater decline belt has formed along the transitional zone between Shanxi and the North China Plain.
- (3)
- The Engle–Granger cointegration test and Granger causality test both show that there is a stable and long-term link between the GWS in Shanxi Province and the North China Plain. The strong and two-way causality suggests that changes in groundwater in one region can clearly affect the other. This mutual influence means that the two groundwater systems are closely connected and respond to each other. These findings point to a strong hydrological link between the two areas. They also show why it is important to include cross-regional interactions in the way groundwater resources are managed.
- (4)
- The groundwater decline in the North China Plain, as an external hydrological pressure, contributed −53.89% to GWS variation in Shanxi Province. Combined with human activities, the total contribution exceeded −98%, while the influence of climatic factors was comparatively minor. These results indicate that human activities and cross-regional hydrological pressure are the dominant drivers of GWS decline.
- (5)
- If cross-regional hydrological interactions are ignored and GWS variation is attributed solely to climatic or anthropogenic factors, it may lead to an overestimation of internal influences and undermine the scientific basis of water resource policy decisions. It is important to use a full framework. This framework should include hydrological linkages between different regions. For areas like Shanxi, which lie between different groundwater systems, such a method is very important for making correct groundwater management decisions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, X.; Shao, M. Loess thickness variations across the Loess Plateau of China. Surv. Geophys. 2018, 39, 715–727. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, Z.; Qin, Y.; Xia, H.; Zheng, Z.; Zhang, L.; Pan, Z.; Liu, Z. Drought under global warming and climate change: An empirical study of the Loess Plateau. Sustainability 2019, 11, 1281. [Google Scholar] [CrossRef]
- Li, J.; Ma, J. Evaluating the Dynamics of Groundwater Storage and Its Sustainability in the Loess Plateau: The Integrated Impacts of Climate Change and Human Activities. Remote Sens. 2024, 16, 4375. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Huang, Q.; Bai, Q.; Leng, G.; Wang, H.; Zhao, J.; Wei, X.; Zheng, X. Effects of vegetation restoration on groundwater drought in the Loess Plateau, China. J. Hydrol. 2020, 591, 125566. [Google Scholar] [CrossRef]
- Xue, Y.-Q.; Zhang, Y.; Ye, S.-J.; Wu, J.-C.; Li, Q.-F. Land subsidence in China. Environ. Geol. 2005, 48, 713–720. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X. Future groundwater extraction scenarios based on COMSOL multiphysics for the confined aquifer at Linfen basin, Shanxi Province, China. Cogent Eng. 2017, 4, 1404178. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Zhang, Q.; Lu, Z.; Yang, C. Deformation of Linfen-Yuncheng Basin (China) and its mechanisms revealed by Π-RATE InSAR technique. Remote Sens. Environ. 2018, 218, 221–230. [Google Scholar] [CrossRef]
- Li, H.; Han, S.; Wu, X.; Wang, S.; Liu, W.; Ma, T.; Zhang, M.; Wei, Y.; Yuan, F.; Yuan, L. Distribution, characteristics and influencing factors of fresh groundwater resources in the Loess Plateau, China. China Geol. 2021, 4, 509–526. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, S.; Zhang, X. Unrevealing past and future vegetation restoration on the Loess Plateau and its impact on terrestrial water storage. J. Hydrol. 2023, 617, 129021. [Google Scholar] [CrossRef]
- Tao, Z.; Li, H.; Neil, E.; Si, B. Groundwater recharge in hillslopes on the Chinese Loess Plateau. J. Hydrol. Reg. Stud. 2021, 36, 100840. [Google Scholar] [CrossRef]
- Shi, P.; Yang, J.; Yang, Y.; Li, Z. Connection between water consumption of apple production and subsurface water depletion on the Loess Plateau of China. Agric. Water Manag. 2025, 315, 109546. [Google Scholar] [CrossRef]
- Xie, X.; Xu, C.; Wen, Y.; Li, W. Monitoring groundwater storage changes in the Loess Plateau using GRACE satellite gravity data, hydrological models and coal mining data. Remote Sens. 2018, 10, 605. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Cao, G.; Zheng, C.; Scanlon, B.R.; Liu, J.; Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res. 2013, 49, 159–175. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, W.; Gao, F.; Bi, X.; Wang, P.; Wang, X. Ecological Security Pattern Construction in Loess Plateau Areas—A Case Study of Shanxi Province, China. Land 2024, 13, 709. [Google Scholar] [CrossRef]
- Duan, Y.; Pei, X.; Zhang, X. The hypsometric integral based on digital elevation model for the area west of Lvliang Mountains in Loess Plateau, Shanxi, China. Front. Earth Sci. 2022, 10, 827836. [Google Scholar] [CrossRef]
- Shang, Y.; Fu, C.; Zhang, W.; Li, X.; Li, X. Groundwater hydrochemistry, source identification and health assessment based on self-organizing map in an intensive mining area in Shanxi, China. Environ. Res. 2024, 252, 118934. [Google Scholar] [CrossRef]
- Li, Y.; Ji, L.; Mi, W.; Xie, S.; Bi, Y. Health risks from groundwater arsenic on residents in northern China coal-rich region. Sci. Total Environ. 2021, 773, 145003. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Zhang, Y.; Shen, J.; Qin, D.; Li, S. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: A case study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Liu, M.Z.; Pei, H.W.; Shen, Y.J. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. J. Hydrol. 2022, 612, 128156. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, W.; Song, J.; Si, B. Spatial variations in groundwater hydrochemistry, sources, and controls across catchments on Chinese Loess Plateau. J. Hydrol. Reg. Stud. 2024, 53, 101791. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, H.; Xi, Q.; Wang, Y.; Jia, X.; Wu, P.; Zhuo, L. Land use and climate change exacerbate the root zone maximum water deficit in the Loess Plateau. Sci. China Earth Sci. 2025, 68, 2328–2345. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Xin, X.; Zhang, Y.; Guo, H. A risk-based energy-structure balance development model for restoring the sustainability of energy-economy-ecological complex system. Ecol. Eng. 2022, 179, 106615. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.; Yang, W.; Wang, W.; Shi, L.; Zhang, X.; Liu, Y.; Tian, Y. Statistical characteristics, trends, and variability of rainfall in Shanxi province, China, during the period 1957–2019. Theor. Appl. Clim. 2022, 148, 955–966. [Google Scholar] [CrossRef]
- Oki, T.; Quiocho, R.E. Economically challenged and water scarce: Identification of global populations most vulnerable to water crises. Int. J. Water Resour. Dev. 2020, 36, 416–428. [Google Scholar] [CrossRef]
- Al Rashed, M.; Sefelnasr, A.; Sherif, M.; Murad, A.; Alshamsi, D.; Aliewi, A.; Ebraheem, A.A. Novel concept for water scarcity quantification considering nonconventional and virtual water resources in arid countries: Application in Gulf Cooperation Council countries. Sci. Total Environ. 2023, 882, 163473. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Chen, H.; Wang, H.; Wada, Y.; Kummu, M.; Gosling, S.N.; Yang, H.; Pokhrel, Y.; Ciais, P. Timing the first emergence and disappearance of global water scarcity. Nat. Commun. 2024, 15, 7129. [Google Scholar] [CrossRef]
- Luo, B.; Sun, Y.; Xu, Z.; Chen, G.; Zhang, L.; Lu, W.; Zhao, X.; Yuan, H. Damage characteristics and mechanism of the 2017 groundwater inrush accident that occurred at Dongyu Coalmine in Taiyuan, Shanxi, China. Water 2021, 13, 368. [Google Scholar] [CrossRef]
- Fangpeng, C.; Qiang, W.; Shuai, Z.; Ningan, W.; Yuan, J. Damage characteristics and mechanism of a strong water inrush disaster at the wangjialing coal mine, Shanxi province, China. Geofluids 2018, 2018, 3253641. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef]
- Wang, M.R.; Yao, J.Q.; Chang, H.Y.; Liu, R.; Xu, N.; Liu, Z.H.; Gong, H.Y.; Zheng, H.L.; Wang, J.K.; Guo, X.; et al. Underground well water level observation grid dataset from 2005 to 2022. Sci. Data 2025, 12, 728. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Didan, K.J. MOD13A3 MODIS/Terra vegetation indices monthly L3 global 1km SIN grid V006; NASA EOSDIS Land Process DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Zhao, K.; Fang, Z.; Li, J.; He, C. Spatial-temporal variations of groundwater storage in China: A multiscale analysis based on GRACE data. Resour. Conserv. Recycl. 2023, 197, 107088. [Google Scholar] [CrossRef]
- Ramjeawon, M.; Demlie, M.; Toucher, M. Analyses of groundwater storage change using GRACE satellite data in the Usutu-Mhlatuze drainage region, north-eastern South Africa. J. Hydrol. Reg. Stud. 2022, 42, 101118. [Google Scholar] [CrossRef]
- Zhao, J.; Li, G.; Zhu, Z.Y.; Hao, Y.H.; Hao, H.Q.; Yao, J.Q.; Bao, T.; Liu, Q.; Yeh, T.C.J. Analysis of the spatiotemporal variation of groundwater storage in Ordos Basin based on GRACE gravity satellite data. J. Hydrol. 2024, 632, 130931. [Google Scholar] [CrossRef]
- Güntner, A.; Stuck, J.; Werth, S.; Döll, P.; Verzano, K.; Merz, B. A global analysis of temporal and spatial variations in continental water storage. Water Resour. Res. 2007, 43, W05416. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Su, K.; Zheng, W.; Yin, W.; Hu, L.; Shen, Y. Improving the accuracy of groundwater storage estimates based on groundwater weighted fusion model. Remote Sens. 2022, 14, 202. [Google Scholar] [CrossRef]
- Alashan, S. Non-monotonic trend analysis using Mann–Kendall with self-quantiles. Theor. Appl. Clim. 2024, 155, 901–910. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Clim. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Agbo, E.P.; Nkajoe, U.; Edet, C.O. Comparison of Mann–Kendall and Şen’s innovative trend method for climatic parameters over Nigeria’s climatic zones. Clim. Dyn. 2023, 60, 3385–3401. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econom. J. Econom. Soc. 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Ozkan, F.; Ozkan, O.; Gunduz, M. Causal relationship between construction investment policy and economic growth in Turkey. Technol. Forecast. Soc. Change 2012, 79, 362–370. [Google Scholar] [CrossRef]
- Beck, N. The methodology of cointegration. Political Anal. 1992, 4, 237–247. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Z.; Song, L.; Yu, X.; Yuan, S.; Zhang, B. A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory. J. Hydroinf. 2024, 26, 2962–2979. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Zhu, M.; Wang, L.; Alizadeh, M.R.; Adamowski, J.F.; Wen, X.; Yin, Z. Variation in actual evapotranspiration and its ties to climate change and vegetation dynamics in northwest China. J. Hydrol. 2022, 607, 127533. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Liu, Z.; Ma, J.; Yang, F.; Guo, H.; Fu, Q. How human activities affect groundwater storage. Research 2024, 7, 0369. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Han, Z.; Pu, W.; Bao, R.; Wang, Z.; Wu, Q.; Qiao, J. Impacts of human activities and climate change on water storage changes in Shandong Province, China. Environ. Sci. Pollut. Res. 2022, 29, 35365–35381. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Liu, S.; Wu, Q.; Liu, W.; Shi, L.; Liu, D. Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China. J. Contam. Hydrol. 2024, 265, 104386. [Google Scholar] [CrossRef]
- Mason, T.; Krogh, M.; Popovic, G.; Glamore, W.; Keith, D. Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Sci. Total Environ. 2021, 772, 144772. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, C.; Canbulat, I.; Saydam, S.; Fan, G.; Zhang, D. Assessment of factors and mechanism contributing to groundwater depressurisation due to longwall mining. Int. J. Coal Sci. Technol. 2024, 11, 58. [Google Scholar] [CrossRef]
- Li, Y.; Lian, H.; Yang, S.; Liu, W.; Yan, T.; Thanh, H.V.; Yin, S.; Dai, Z. Investigating steeply inclined abandoned mines for unlocking the secrets of water level recovery. Sci. Rep. 2024, 14, 31142. [Google Scholar] [CrossRef]
- Sun, K.; Fan, L.; Xia, Y.; Li, C.; Chen, J.; Gao, S.; Wu, B.; Peng, J.; Ji, Y. Impact of coal mining on groundwater of Luohe Formation in Binchang mining area. Int. J. Coal Sci. Technol. 2021, 8, 88–102. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Shang, D.; Wu, Z.; Du, Z.; Tan, T.; Wang, Y.; Zhang, F.; Zhang, R. Explosive secondary aerosol formation during severe haze in the North China Plain. Environ. Sci. Technol. 2021, 55, 2189–2207. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, Q.; Zhang, Y.; Zhu, Y.; Yin, S.; Qin, L.; Li, X. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J. Review of drivers and threats to coastal groundwater quality in China. Sci. Total Environ. 2022, 806, 4. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Luo, Y.; Yang, D.; Yang, J.; Zhao, Y.; Zhang, J. Coordinative management of soil resources and agricultural farmland environment for food security and sustainable development in China. Int. J. Environ. Res. Public. Health 2023, 20, 3233. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, N.S.; Deka, P.C. Sustainable development and management of groundwater resources in mining affected areas: A review. Procedia Earth Planet. Sci. 2015, 11, 598–604. [Google Scholar] [CrossRef]
- Zhao, J.; Song, S.; Zhang, K.; Li, X.; Zheng, X.; Wang, Y.; Ku, G. An investigation into the disturbance effects of coal mining on groundwater and surface ecosystems. Environ. Geochem. Health 2023, 45, 7011–7031. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.a.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
Well | Elevation (m) | Monitoring Depth (m) | Location | Groundwater Type | Correlation Coefficient |
---|---|---|---|---|---|
W1 | 797.15 | 52.00–104.00 | Taiyuan | Unconfined Aquifer | −0.708 |
W2 | 779.03 | 139.67–250.55 | Taiyuan | Confined Aquifer | −0.814 |
W3 | 346.73 | 92.20–194.00 | Yuncheng | Confined Aquifer | 0.463 |
W4 | 447.82 | 57.28–187.00 | Linfen | Confined Aquifer | 0.616 |
W5 | 1059.73 | 19.26–92.50 | Datong | Confined Aquifer | 0.104 |
W6 | 1096.4 | 0.00–439.94 | Shuozhou | Confined Aquifer | 0.929 |
W7 | 934.61 | 0.00–160.00 | Changzhi | Confined Aquifer | 0.763 |
W8 | 968.53 | 316.77–500.00 | Changzhi | Confined Aquifer | 0.693 |
W9 | 1052.11 | 37.00–93.00 | Datong | Confined Aquifer | 0.993 |
W10 | 1050.7 | 0.00–157.00 | Datong | Confined Aquifer | 0.917 |
W11 | 1040.22 | 0.00–75.00 | Datong | Confined Aquifer | 0.917 |
W12 | 1039.84 | 0.00–20.00 | Datong | Unconfined Aquifer | 0.402 |
Variable | ADF Statistic | 5% Critical Value | p-Value | Conclusion |
---|---|---|---|---|
GWSSX | −2.724 | −3.431 | 0.226 | Non-stationary |
GWSNCP | −2.049 | −3.431 | 0.575 | Non-stationary |
Residuals | −4.139 *** | −1.950 | <0.01 | Cointegration exists |
Causal Direction | χ2 Statistic | p-Value | Conclusion |
---|---|---|---|
GWSSX → GWSNCP | 12.739 *** | 0.002 | Causal relationship exists |
GWSNCP → GWSSX | 33.664 *** | 0.001 | Causal relationship exists |
Category | Influencing Factor | Contribution Rate (%) |
---|---|---|
Climatic Factors | Precipitation | 0.08 |
Evaporation | −0.83 | |
Runoff | −0.22 | |
Human Activities | Water Consumption | −18.49 |
Coal Mining | −25.70 | |
NDVI | −0.78 | |
External Factors | GWSNCP | −53.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, J.; Zhou, Y.; Duan, Z.; Guo, Y. Groundwater Crisis in the Eastern Loess Plateau: Evolution of Storage, Linkages with the North China Plain, and Driving Mechanisms. Remote Sens. 2025, 17, 2785. https://doi.org/10.3390/rs17162785
Li J, Ma J, Zhou Y, Duan Z, Guo Y. Groundwater Crisis in the Eastern Loess Plateau: Evolution of Storage, Linkages with the North China Plain, and Driving Mechanisms. Remote Sensing. 2025; 17(16):2785. https://doi.org/10.3390/rs17162785
Chicago/Turabian StyleLi, Jifei, Jinzhu Ma, Ying Zhou, Zhihua Duan, and Yuning Guo. 2025. "Groundwater Crisis in the Eastern Loess Plateau: Evolution of Storage, Linkages with the North China Plain, and Driving Mechanisms" Remote Sensing 17, no. 16: 2785. https://doi.org/10.3390/rs17162785
APA StyleLi, J., Ma, J., Zhou, Y., Duan, Z., & Guo, Y. (2025). Groundwater Crisis in the Eastern Loess Plateau: Evolution of Storage, Linkages with the North China Plain, and Driving Mechanisms. Remote Sensing, 17(16), 2785. https://doi.org/10.3390/rs17162785