Machine Learning-Based Soil Moisture Inversion from Drone-Borne X-Band Microwave Radiometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment
2.2. Drone-Borne Passive Microwave Observation System
2.3. Drone-Borne Multispectral Observation and Ground Observation Parameters
2.4. Machine Learning Models
2.5. Model Performance Evaluation
3. Results
3.1. Experimental Parameter Measurement Results
3.2. Machine Learning and Soil Moisture Inversion Results
4. Discussion
4.1. Experimental Parameter Measurement
4.2. Machine Learning and Soil Moisture Inversion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSM | Surface soil moisture |
SCA | Single-channel algorithm |
IFOV | Instantaneous field of view |
RMSH | Root mean square height |
CLL | Correlation length |
MWC | Mass water content |
VWC | Volumetric water content |
SVM | Support vector regression |
GPR | Gaussian process regression |
RF | Random forest |
RMSE | Root mean square error |
MAE | Mean absolute error |
OOB | Out of bag |
References
- Bras, R.L. Complexity and Organization in Hydrology: A Personal View. Water Resour. Res. 2015, 51, 6532–6548. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A Review of Remote Sensing Applications for Water Security: Quantity, Quality, and Extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Zheng, X.; Li, X.; Jiang, T.; Ju, H.; Wan, X. The Effects of Declining Soil Moisture Levels on Suitable Maize Cultivation Areas in Northeast China. J. Hydrol. 2022, 608, 127636. [Google Scholar] [CrossRef]
- Guo, T.; Zheng, J.; Wang, C.; Tao, Z.; Zheng, X.; Wang, Q.; Li, L.; Feng, Z.; Wang, X.; Li, X.; et al. A Cloud Framework for High Spatial Resolution Soil Moisture Mapping from Radar and Optical Satellite Imageries. Chin. Geogr. Sci. 2023, 33, 649–663. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, H.; Zhang, J.; Li, S.; Li, J.; Yao, F.; Mahecha, M.D.; Peng, J. Global Assessment of Terrestrial Productivity in Response to Water Stress. Sci. Bull. 2024, 69, 2352–2356. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating Soil Moisture and the Relationship with Crop Yield Using Surface Temperature and Vegetation Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Wu, X.; Ma, W.; Xia, J.; Bai, W.; Jin, S.; Calabia, A. Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development Opportunities, and Challenges. Remote Sens. 2020, 13, 45. [Google Scholar] [CrossRef]
- Zakharov, I.; Kohlsmith, S.; Hornung, J.; Charbonneau, F.; Bobby, P.; Howell, M. Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas. Remote Sens. 2024, 16, 2664. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Homayouni, S.; Bhattacharya, A.; Rao, Y.S. Field-Scale Soil Moisture Estimation Using Sentinel-1 GRD SAR Data. Adv. Space Res. 2022, 70, 3845–3858. [Google Scholar] [CrossRef]
- Engman, E.T.; Chauhan, N. Status of Microwave Soil Moisture Measurements with Remote Sensing. Remote Sens. Environ. 1995, 51, 189–198. [Google Scholar] [CrossRef]
- Thaggahalli Nagaraju, S.K.; Pathak, A.A. Retrieving Surface and Rootzone Soil Moisture Using Microwave Remote Sensing. J. Indian Soc. Remote Sens. 2024, 52, 1415–1430. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Guo, Z.; Yang, H.; Li, N. Soil Moisture Inversion Based on Data Augmentation Method Using Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 1899. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, K. A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing. Chin. Geogr. Sci. 2010, 20, 345–352. [Google Scholar] [CrossRef]
- Derksen, C.; Walker, A.; LeDrew, E.; Goodison, B. Combining SMMR and SSM/I Data for Time Series Analysis of Central North American Snow Water Equivalent. J. Hydrometeorol. 2003, 4, 304–316. [Google Scholar] [CrossRef]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R.W. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s Contribution to the EOS for Global Energy and Water Cycle Studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [Google Scholar] [CrossRef]
- Li, S.; Xing, M.; Dong, T. An Apparent Thermal Inertia Based Trapezoid Model for Downscaling of ESA CCI Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 4473–4486. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X. A New Soil Moisture Retrieval Algorithm from the L-Band Passive Microwave Brightness Temperature Based on the Change Detection Principle. Remote Sens. 2020, 12, 1303. [Google Scholar] [CrossRef]
- Wang, W.; Ma, C.; Wang, X.; Feng, J.; Dong, L.; Kang, J.; Jin, R.; Li, X. A Soil Moisture Experiment for Validating High-Resolution Satellite Products and Monitoring Irrigation at Agricultural Field Scale. Agric. Water Manag. 2024, 304, 109071. [Google Scholar] [CrossRef]
- Archer, F.; Shutko, A.M.; Coleman, T.L.; Haldin, A.; Novichikhin, E.P.; Sidorov, I.A. Introduction, Overview, and Status of the Microwave Autonomous Copter System (MACS). In Proceedings of the International Geoscience and Remote Sensing Symposium, Athens, Greece, 20–24 September 2004. [Google Scholar] [CrossRef]
- Brown, S.T.; Lambrigtsen, B.; Denning, R.F.; Gaier, T.; Kangaslahti, P.; Lim, B.H.; Tanabe, J.M.; Tanner, A.B. The High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle: Instrument Description and Performance. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3291–3301. [Google Scholar] [CrossRef]
- Acevo-Herrera, R.; Aguasca, A.; Bosch-Lluis, X.; Camps, A.; Martínez-Fernández, J.; Sánchez-Martín, N.; Pérez-Gutiérrez, C. Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes. Remote Sens. 2010, 2, 1662–1679. [Google Scholar] [CrossRef]
- Houtz, D.; Naderpour, R.; Schwank, M. Portable L-Band Radiometer (PoLRa): Design and Characterization. Remote Sens. 2020, 12, 2780. [Google Scholar] [CrossRef]
- Zhang, R.; Nayak, A.; Houtz, D.; Watts, A.; Soltanaghai, E.; Alipour, M. Evaluation of Soil Moisture Retrievals from a Portable L-Band Microwave Radiometer. Remote Sens. 2024, 16, 4596. [Google Scholar] [CrossRef]
- Horton, D.; Johnson, J.T.; Al-Khaldi, M.; Park, J.; Bindlish, R. A Study of the Second Order Small Slope Approximation for L-Band Backscattering from Soil Surfaces. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 5 September 2024; pp. 4354–4357. [Google Scholar] [CrossRef]
- Oh, Y. Quantitative Retrieval of Soil Moisture Content and Surface Roughness from Multipolarized Radar Observations of Bare Soil Surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 596–601. [Google Scholar] [CrossRef]
- Song, K. Multilayer Soil Model for Improvement of Soil Moisture Estimation Using the Small Perturbation Method. J. Appl. Remote Sens. 2009, 3, 033567. [Google Scholar] [CrossRef]
- Cui, K.; Xing, M.; Shang, J.; Zhou, X.; Wang, J. Enhanced L-MEB Model for Soil Moisture Retrieval over Soybean Fields during the Growing Season. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4409216. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Bindlish, R. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals. Geophys. Res. Lett. 2018, 45, 758–765. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Sungmin, O.; Orth, R. Global Soil Moisture Data Derived through Machine Learning Trained with In-Situ Measurements. Sci. Data 2021, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Teshome, F.T.; Bayabil, H.K.; Schaffer, B.; Ampatzidis, Y.; Hoogenboom, G. Improving Soil Moisture Prediction with Deep Learning and Machine Learning Models. Comput. Electron. Agric. 2024, 226, 109414. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Wagner, W. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Zhang, X.; Peng, J.; Li, X.; Fu, P.; Cosh, M.H.; Letu, H.; Wang, S.; Chen, N.; et al. Surface Soil Moisture from Combined Active and Passive Microwave Observations: Integrating ASCAT and SMAP Observations Based on Machine Learning Approaches. Remote Sens. Environ. 2024, 308, 114197. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y. Soil Moisture Retrieval from Sentinel-1 and Sentinel-2 Data Using Ensemble Learning over Vegetated Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1802–1814. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Jiang, T.; Zheng, X.; Li, L.; Wang, X. High-Resolution Imaging of Radiation Brightness Temperature Obtained by Drone-Borne Microwave Radiometer. Remote Sens. 2023, 15, 832. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Jiang, T.; Zheng, X.; Li, X.; Li, L. A Fast Storage Method for Drone-Borne Passive Microwave Radiation Measurement. Sensors 2021, 21, 6767. [Google Scholar] [CrossRef]
- Lei, F.; Volkan, S.; Mehmet, K.; Ali, C.G.; Moorhead, R.J.; Boyd, D. Machine-Learning Based Retrieval of Soil Moisture at High Spatio-Temporal Scales Using CYGNSS and SMAP Observations. In Proceedings of the Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Q.; Zhang, L. Geo-Intelligent Retrieval Framework Based on Machine Learning in the Cloud Environment: A Case Study of Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Y.; Zhang, L.; Li, H. Ensemble Learning Embedded with Gaussian Process Regression for Soil Moisture Estimation: A Case Study of the Continental U.S. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4508817. [Google Scholar] [CrossRef]
- Luan, H.; Zhao, K. Error Analysis and Accuracy Validation of Two-Point Calibration for Microwave Radiometer Receiver. J. Infrared Millim. Waves 2007, 26, 289–292. [Google Scholar]
- Xu, W.T.; Yang, C.T. Microwave Radiometer Calibration and Its Error Analysis. In Proceedings of the Conference on Precision Electromagnetic Measurements, Ibaraki, Japan, 6 August 2002; pp. 390–391. [Google Scholar] [CrossRef]
- DJI Mavic 3M Manual, V1.7 ed.; Dajiang Innovation: Shenzhen, China, 2024; Available online: https://dl.djicdn.com/downloads/DJI_Mavic_3_Enterprise/20240606/DJI_Mavic_3M_User_Manual_CHS.pdf (accessed on 1 July 2025).
- Zheng, X.; Feng, Z.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X.; Chen, S. Simultaneously Estimating Surface Soil Moisture and Roughness of Bare Soils by Combining Optical and Radar Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102345. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.; Ding, K.-H. Scattering of Electromagnetic Waves: Theories and Applications; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Franceschetti, G.; Riccio, D. Scattering, Natural Surfaces, and Fractals; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Jackson, T.J.; McKim, H.L. Survey of Methods for Soil Moisture Determination. Water Resour. Res. 1980, 16, 961–979. [Google Scholar] [CrossRef]
- Stafford, J.V. Remote, Non-Contact and In-Situ Measurement of Soil Moisture Content: A Review. J. Agric. Eng. Res. 1988, 41, 151–172. [Google Scholar] [CrossRef]
- Olson, R.S.; Cava, W.L.; Mustahsan, Z.; Varik, A.; Moore, J.H. Data-Driven Advice for Applying Machine Learning to Bioinformatics Problems. Pac. Symp. Biocomput. 2018, 23, 192–203. [Google Scholar] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Piles, M.; Vall-llossera, M.; Camps, A.; Talone, M.; Monerris, A. Analysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-Band Passive Observations. Remote Sens. 2010, 2, 352–374. [Google Scholar] [CrossRef]
- Martinez-Agirre, A.; Alvarez-Mozos, J.; Lievens, H.; Verhoest, N.E.C. Influence of Surface Roughness Measurement Scale on Radar Backscattering in Different Agricultural Soils. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5925–5936. [Google Scholar] [CrossRef]
Center Frequency | 10.65 ± 0.2 GHz | IF Bandwidth | 400 MHz |
Sensitivity | ≤0.2 K | Stability | 1 K |
RF Switch Rate | 200 ms | Weight | 8 Kg |
Power Consumption | 30 W | Size (cm × cm × cm) | 37 × 27 × 12 |
Front-End Gain | 50 dB | IF Gain | 45 dB |
Variable Attenuation | 0~30 dB | Switch Insertion Loss | 3.2 dB |
Antenna Gain | 20 dB | 3 dB Beam Width | 15° |
Training | |||||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | r2 | |||||||
Mean * | Std ** | CI (95%) *** | Mean | Std | CI (95%) | Mean | Std | CI (95%) | |
Linear regression | 4.27% | 0.68% | 4.13–4.40% | 1.87% | 0.18% | 1.84–1.91% | 0.73 | 0.05 | 0.72–0.74 |
Regression trees | 4.26% | 0.67% | 4.13–4.40% | 1.60% | 0.17% | 1.56–1.63% | 0.797 | 0.04 | 0.79–0.80 |
SVR | 3.48% | 0.33% | 3.41–3.54% | 1.43% | 0.16% | 1.40–1.47% | 0.815 | 0.04 | 0.81–0.82 |
GPR | 3.51% | 0.35% | 3.44–3.58% | 1.75% | 0.35% | 1.68–1.82% | 0.783 | 0.08 | 0.77–0.80 |
Boosted trees | 3.76% | 0.35% | 3.69–3.83% | 1.59% | 0.12% | 1.56–1.61% | 0.851 | 0.02 | 0.85–0.86 |
Random forest | 2.35% | 0.13% | 2.32–2.37% | 1.78% | 0.12% | 1.76–1.80% | 0.74 | 0.03 | 0.74–0.75 |
Validation | |||||||||
RMSE | MAE | r2 | |||||||
Mean | Std | CI (95%) | Mean | Std | CI (95%) | Mean | Std | CI (95%) | |
Linear regression | 3.91% | 1.12% | 3.69–4.14% | 3.06% | 0.83% | 2.90–3.22% | 0.423 | 0.26 | 0.37–0.47 |
Regression trees | 4.36% | 1.14% | 4.14–4.59% | 3.38% | 0.81% | 3.22–3.54% | 0.321 | 0.24 | 0.27–0.37 |
SVR | 3.33% | 0.90% | 3.16–3.51% | 2.60% | 0.71% | 2.46–2.74% | 0.521 | 0.24 | 0.47–0.57 |
GPR | 3.39% | 0.92% | 3.21–3.58% | 2.69% | 0.74% | 2.54–2.84% | 0.501 | 0.25 | 0.45–0.55 |
Boosted trees | 3.67% | 0.76% | 3.52–3.82% | 2.94% | 0.70% | 2.80–3.07% | 0.43 | 0.22 | 0.39–0.47 |
Random forest | 3.04% | 1.19% | 2.81–3.28% | 2.47% | 1.01% | 2.27–2.67% | 0.65 | 0.31 | 0.60–0.72 |
Features | Training | Validation | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
All | 2.24% | 1.76% | 0.8 | 3.03% | 2.67% | 0.38 |
Ridge parameters and spectrum | 2.52% | 2.02% | 0.75 | 2.53% | 2.12% | 0.68 |
Microwave and spectrum | 2.37% | 1.83% | 0.77 | 3.48% | 2.74% | 0.47 |
Ridge parameters and microwave | 2.49% | 1.88% | 0.72 | 2.61% | 2.06% | 0.68 |
Only microwave | 2.47% | 1.84% | 0.74 | 2.77% | 2.24% | 0.48 |
Only spectrum | 2.73% | 2.09% | 0.69 | 4.18% | 3.23% | 0.24 |
Only ridge parameters | 2.97% | 2.30% | 0.59 | 2.66% | 2.00% | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Li, X.; Jiang, T.; Zheng, X.; Li, L. Machine Learning-Based Soil Moisture Inversion from Drone-Borne X-Band Microwave Radiometry. Remote Sens. 2025, 17, 2781. https://doi.org/10.3390/rs17162781
Wan X, Li X, Jiang T, Zheng X, Li L. Machine Learning-Based Soil Moisture Inversion from Drone-Borne X-Band Microwave Radiometry. Remote Sensing. 2025; 17(16):2781. https://doi.org/10.3390/rs17162781
Chicago/Turabian StyleWan, Xiangkun, Xiaofeng Li, Tao Jiang, Xingming Zheng, and Lei Li. 2025. "Machine Learning-Based Soil Moisture Inversion from Drone-Borne X-Band Microwave Radiometry" Remote Sensing 17, no. 16: 2781. https://doi.org/10.3390/rs17162781
APA StyleWan, X., Li, X., Jiang, T., Zheng, X., & Li, L. (2025). Machine Learning-Based Soil Moisture Inversion from Drone-Borne X-Band Microwave Radiometry. Remote Sensing, 17(16), 2781. https://doi.org/10.3390/rs17162781