Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling
Abstract
1. Introduction
2. Data and Methods
3. The Weakening Relationship Between the Arctic Ozone and Northeast Pacific SST Since the 2000s
4. Diagnosing the Possible Mechanisms Behind the Decadal Changes
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madronich, S.; Lee-Taylor, J.M.; Wagner, M.; Kyle, J.; Hu, Z.; Landolfi, R. Estimation of Skin and Ocular Damage Avoided in the United States through Implementation of the Montreal Protocol on Substances That Deplete the Ozone Layer. ACS Earth Space Chem. 2021, 5, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.R. The Influence of Climate Change on Skin Cancer Incidence—A Review of the Evidence. Int. J. Dermatol. 2021, 7, 17–27. [Google Scholar] [CrossRef]
- Saurral, R.I.; Kucharski, F.; Raggio, G.A. Variations in ozone and greenhouse gases as drivers of Southern Hemisphere climate in a medium-complexity global climate model. Clim. Dyn. 2019, 53, 6645–6663. [Google Scholar] [CrossRef]
- Lee, S.; Feldstein, S.B. Detecting Ozone- and Greenhouse Gas–Driven Wind Trends with Observational Data. Science 2013, 339, 563–567. [Google Scholar] [CrossRef]
- Gonzalez, P.L.M.; Polvani, L.M.; Seager, R.; Correa, G.J.P. Stratospheric Ozone Depletion: A Key Driver of Recent Precipitation Trends in South Eastern South America. Clim. Dyn. 2014, 42, 1775–1792. [Google Scholar] [CrossRef]
- Previdi, M.; Polvani, L.M. Climate System Response to Stratospheric Ozone Depletion and Recovery. Q. J. R. Meteorol. Soc. 2014, 140, 2401–2419. [Google Scholar] [CrossRef]
- Kang, S.M.; Polvani, L.M.; Fyfe, J.C.; Son, S.-W.; Sigmond, M.; Correa, G.J.P. Modeling Evidence That Ozone Depletion Has Impacted Extreme Precipitation in the Austral Summer. Geophys. Res. Lett. 2013, 40, 4054–4059. [Google Scholar] [CrossRef]
- Bandoro, J.; Solomon, S.; Donohoe, A.; Thompson, D.W.J.; Santer, B.D. Influences of the Antarctic Ozone Hole on Southern Hemispheric Summer Climate Change. J. Clim. 2014, 27, 6245–6264. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F.; Chen, X.; Wang, L.; Yang, G. Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America. Remote Sens. 2022, 14, 5040. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F.; Li, J.; Zheng, X.; Tian, W.; Ding, R.; Sun, C.; Zhang, J. Effects of Arctic Stratospheric Ozone Changes on Spring Precipitation in the Northwestern United States. Atmos. Chem. Phys. 2019, 19, 861–875. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F. Predicting April Precipitation in the Northwestern United States Based on Arctic Stratospheric Ozone and Local Circulation. Front. Earth Sci. 2020, 8, 56. [Google Scholar] [CrossRef]
- Xie, F.; Ma, X.; Li, J.; Huang, J.; Tian, W.; Zhang, J.; Hu, Y.; Sun, C.; Zhou, X.; Feng, J.; et al. An Advanced Impact of Arctic Stratospheric Ozone Changes on Spring Precipitation in China. Clim. Dyn. 2018, 51, 4029–4041. [Google Scholar] [CrossRef]
- Xie, F.; Ma, X.; Li, J.; Tian, W.; Ruan, C.; Sun, C. Using Observed Signals from the Arctic Stratosphere and Indian Ocean to Predict April–May Precipitation in Central China. J. Clim. 2020, 33, 131–143. [Google Scholar] [CrossRef]
- Friedel, M.; Chiodo, G.; Stenke, A.; Domeisen, D.I.V.; Fueglistaler, S.; Anet, J.G.; Peter, T. Springtime Arctic Ozone Depletion Forces Northern Hemisphere Climate Anomalies. Nat. Geosci. 2022, 15, 541–547. [Google Scholar] [CrossRef]
- Gillett, Z.E.; Arblaster, J.M.; Dittus, A.J.; Deushi, M.; Jöckel, P.; Kinnison, D.E.; Morgenstern, O.; Plummer, D.A.; Revell, L.E.; Rozanov, E.; et al. Evaluating the Relationship between Interannual Variations in the Antarctic Ozone Hole and Southern Hemisphere Surface Climate in Chemistry–Climate Models. J. Clim. 2019, 32, 3131–3151. [Google Scholar] [CrossRef]
- Bahramvash Shams, S.; Walden, V.P.; Hannigan, J.W.; Randel, W.J.; Petropavlovskikh, I.V.; Butler, A.H.; De La Cámara, A. Analyzing Ozone Variations and Uncertainties at High Latitudes during Sudden Stratospheric Warming Events Using MERRA-2. Atmos. Chem. Phys. 2022, 22, 5435–5458. [Google Scholar] [CrossRef]
- Lu, J.; Xie, F.; Tian, W.; Li, J.; Wuhu, F.; Chipperfield, M.; Zhang, J.; Ma, X. Interannual Variations in Lower Stratospheric Ozone During the Period 1984–2016. J. Geophys. Res. 2019, 124, 8225–8241. [Google Scholar] [CrossRef]
- Dietmüller, S.; Garny, H.; Eichinger, R.; Ball, W.T. Analysis of Recent Lower-Stratospheric Ozone Trends in Chemistry Climate Models. Atmos. Chem. Phys. 2021, 21, 6811–6837. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F. A Stratospheric Ozone Profile Data Set for 1979–2005: Variability, Trends, and Comparisons with Column Ozone Data. J. Geophys. Res. 2007, 112, 2006JD007339. [Google Scholar] [CrossRef]
- Weber, M.; Arosio, C.; Coldewey-Egbers, M.; Fioletov, V.E.; Frith, S.M.; Wild, J.D.; Tourpali, K.; Burrows, J.P.; Loyola, D. Global Total Ozone Recovery Trends Attributed to Ozone-Depleting Substance (ODS) Changes Derived from Five Merged Ozone Datasets. Atmos. Chem. Phys. 2022, 22, 6843–6859. [Google Scholar] [CrossRef]
- Waugh, D.W.; Oman, L.; Kawa, S.R.; Stolarski, R.S.; Pawson, S.; Douglass, A.R.; Newman, P.A.; Nielsen, J.E. Impacts of Climate Change on Stratospheric Ozone Recovery. Geophys. Res. Lett. 2009, 36, 2008GL036223. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Bekki, S.; Dhomse, S.; Harris, N.R.P.; Hassler, B.; Hossaini, R.; Steinbrecht, W.; Thiéblemont, R.; Weber, M. Detecting Recovery of the Stratospheric Ozone Layer. Nature 2017, 549, 211–218. [Google Scholar] [CrossRef]
- Plummer, D.A.; Scinocca, J.F.; Shepherd, T.G.; Reader, M.C.; Jonsson, A.I. Quantifying the Contributions to Stratospheric Ozone Changes from Ozone Depleting Substances and Greenhouse Gases. Atmos. Chem. Phys. 2010, 10, 8803–8820. [Google Scholar] [CrossRef]
- Oman, L.D.; Douglass, A.R.; Ziemke, J.R.; Rodriguez, J.M.; Waugh, D.W.; Nielsen, J.E. The Ozone Response to ENSO in Aura Satellite Measurements and a Chemistry-climate Simulation. J. Geophys. Res. 2013, 118, 965–976. [Google Scholar] [CrossRef]
- Benito-Barca, S.; Calvo, N.; Abalos, M. Driving Mechanisms for the El Niño–Southern Oscillation Impact on Stratospheric Ozone. Atmos. Chem. Phys. 2022, 22, 15729–15745. [Google Scholar] [CrossRef]
- Olsen, M.A.; Manney, G.L.; Liu, J. The ENSO and QBO Impact on Ozone Variability and Stratosphere-Troposphere Exchange Relative to the Subtropical Jets. J. Geophys. Res. 2019, 124, 7379–7392. [Google Scholar] [CrossRef]
- Wang, W.; Hong, J.; Shangguan, M.; Wang, H.; Jiang, W.; Zhao, S. Zonally Asymmetric Influences of the Quasi-Biennial Oscillation on Stratospheric Ozone. Atmos. Chem. Phys. 2022, 22, 13695–13711. [Google Scholar] [CrossRef]
- Krzyścin, J.W. El Niño-Southern Oscillation and Indian Ocean Dipole Contribution to the Zonal Mean Total Ozone in the Northern Hemisphere. Int. J. Climatol. 2017, 37, 3517–3524. [Google Scholar] [CrossRef]
- Nath, O.; Singh, B.B.; Kunchala, R.K. El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) Signatures in Tropical Ozone in the Upper Troposphere Lower Stratosphere (UTLS). Meteorol. Atmos. Phys. 2024, 136, 10. [Google Scholar] [CrossRef]
- Gamelin, B.L.; Carvalho, L.M.V.; Kayano, M. The Combined Influence of ENSO and PDO on the Spring UTLS Ozone Variability in South America. Clim. Dyn. 2020, 55, 1539–1562. [Google Scholar] [CrossRef]
- Molina, M.J.; Rowland, F.S. Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalyzed Destruction of Ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Solomon, P.; Barrett, J.; Mooney, T.; Connor, B.; Parrish, A.; Siskind, D.E. Rise and Decline of Active Chlorine in the Stratosphere. Geophys. Res. Lett. 2006, 33, 2006GL027029. [Google Scholar] [CrossRef]
- Mäder, J.A.; Staehelin, J.; Peter, T.; Brunner, D.; Rieder, H.E.; Stahel, W.A. Evidence for the Effectiveness of the Montreal Protocol to Protect the Ozone Layer. Atmos. Chem. Phys. 2010, 10, 12161–12171. [Google Scholar] [CrossRef]
- Newman, P.A.; McKenzie, R. UV Impacts Avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 2011, 10, 1152–1160. [Google Scholar] [CrossRef]
- Steinbrecht, W.; Froidevaux, L.; Fuller, R.; Wang, R.; Anderson, J.; Roth, C.; Bourassa, A.; Degenstein, D.; Damadeo, R.; Zawodny, J.; et al. An Update on Ozone Profile Trends for the Period 2000 to 2016. Atmos. Chem. Phys. 2017, 17, 10675–10690. [Google Scholar] [CrossRef]
- Tummon, F.; Hassler, B.; Harris, N.R.P.; Staehelin, J.; Steinbrecht, W.; Anderson, J.; Bodeker, G.E.; Bourassa, A.; Davis, S.M.; Degenstein, D.; et al. Intercomparison of Vertically Resolved Merged Satellite Ozone Data Sets: Interannual Variability and Long-Term Trends. Atmos. Chem. Phys. 2015, 15, 3021–3043. [Google Scholar] [CrossRef]
- Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Peter, T.; Tummon, F.; Stübi, R.; Stenke, A.; Anderson, J.; et al. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef]
- Wargan, K.; Orbe, C.; Pawson, S.; Ziemke, J.R.; Oman, L.D.; Olsen, M.A.; Coy, L.; Emma Knowland, K. Recent Decline in Extratropical Lower Stratospheric Ozone Attributed to Circulation Changes. Geophys. Res. Lett. 2018, 45, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Tweedy, O.V.; Waugh, D.W.; Randel, W.J.; Abalos, M.; Oman, L.D.; Kinnison, D.E. The Impact of Boreal Summer ENSO Events on Tropical Lower Stratospheric Ozone. J. Geophys. Res. 2018, 123, 9843–9857. [Google Scholar] [CrossRef]
- Müller, R.; Grooß, J.-U.; Lemmen, C.; Heinze, D.; Dameris, M.; Bodeker, G. Simple Measures of Ozone Depletion in the Polar Stratosphere. Atmos. Chem. Phys. 2008, 8, 251–264. [Google Scholar] [CrossRef]
- Austin, J.; Wilson, R.J. Ensemble Simulations of the Decline and Recovery of Stratospheric Ozone. J. Geophys. Res. 2006, 111, 2005JD006907. [Google Scholar] [CrossRef]
- Harari, O.; Garfinkel, C.I.; Ziskin Ziv, S.; Morgenstern, O.; Zeng, G.; Tilmes, S.; Kinnison, D.; Deushi, M.; Jöckel, P.; Pozzer, A.; et al. Influence of Arctic Stratospheric Ozone on Surface Climate in CCMI Models. Atmos. Chem. Phys. 2019, 19, 9253–9268. [Google Scholar] [CrossRef]
- Cheung, J.C.H.; Haigh, J.D.; Jackson, D.R. Impact of EOS MLS Ozone Data on Medium-extended Range Ensemble Weather Forecasts. J. Geophys. Res. 2014, 119, 9253–9266. [Google Scholar] [CrossRef]
- Calvo, N.; Polvani, L.M.; Solomon, S. On the Surface Impact of Arctic Stratospheric Ozone Extremes. Environ. Res. Lett. 2015, 10, 094003. [Google Scholar] [CrossRef]
- Ivy, D.J.; Solomon, S.; Calvo, N.; Thompson, D.W.J. Observed Connections of Arctic Stratospheric Ozone Extremes to Northern Hemisphere Surface Climate. Environ. Res. Lett. 2017, 12, 024004. [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E.; Baggett, C.F.; Barnes, E.A. Prediction of Northern Hemisphere Regional Surface Temperatures Using Stratospheric Ozone Information. J. Geophys. Res. 2019, 124, 5922–5933. [Google Scholar] [CrossRef]
- Hurwitz, M.M.; Newman, P.A.; Garfinkel, C.I. The Arctic Vortex in March 2011: A Dynamical Perspective. Atmos. Chem. Phys. 2011, 11, 11447–11453. [Google Scholar] [CrossRef]
- Hu, D.; Guan, Z.; Tian, W.; Ren, R. Recent Strengthening of the Stratospheric Arctic Vortex Response to Warming in the Central North Pacific. Nat. Commun. 2018, 9, 1697. [Google Scholar] [CrossRef]
- Hu, D.; Guan, Z. Decadal Relationship between the Stratospheric Arctic Vortex and Pacific Decadal Oscillation. J. Clim. 2018, 31, 3371–3386. [Google Scholar] [CrossRef]
- Kren, A.C.; Marsh, D.R.; Smith, A.K.; Pilewskie, P. Wintertime Northern Hemisphere Response in the Stratosphere to the Pacific Decadal Oscillation Using the Whole Atmosphere Community Climate Model. J. Clim. 2016, 29, 1031–1049. [Google Scholar] [CrossRef]
- Woo, S.-H.; Sung, M.-K.; Son, S.-W.; Kug, J.-S. Connection between Weak Stratospheric Vortex Events and the Pacific Decadal Oscillation. Clim. Dyn. 2015, 45, 3481–3492. [Google Scholar] [CrossRef]
- Hurwitz, M.M.; Newman, P.A.; Garfinkel, C.I. On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate. J. Geophys. Res. 2012, 117, 2012JD017819. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hurwitz, M.M.; Oman, L.D. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex. J. Geophys. Res. 2015, 120, 5404–5416. [Google Scholar] [CrossRef]
- Liu, M.; Hu, D.; Zhang, F. Connections Between Stratospheric Ozone Concentrations Over the Arctic and Sea Surface Temperatures in the North Pacific. J. Geophys. Res. 2020, 125, e2019JD031690. [Google Scholar] [CrossRef]
- Wang, T.; Tian, W.; Lin, Y.; Gou, X.; Liu, H.; Wang, X.; Xie, F. Decadal Changes in the Relationship between Arctic Stratospheric Ozone and Sea Surface Temperatures in the North Pacific. Atmos. Res. 2023, 292, 106870. [Google Scholar] [CrossRef]
- Davis, S.M.; Rosenlof, K.H.; Hassler, B.; Hurst, D.F.; Read, W.G.; Vömel, H.; Selkirk, H.; Fujiwara, M.; Damadeo, R. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) Database:A Long-Term Database for Climate Studies. Earth Syst. Sci. Data 2016, 8, 461–490. [Google Scholar] [CrossRef] [PubMed]
- Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis. J. Clim. 2017, 30, 2961–2988. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: Cambridge, MA, USA, 1987; 489p. [Google Scholar]
- Wong, T.-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Stat. Sci. 1986, 1, 54–57. [Google Scholar] [CrossRef]
- Weber, M.; Dhomse, S.; Wittrock, F.; Richter, A.; Sinnhuber, B.; Burrows, J.P. Dynamical Control of NH and SH Winter/Spring Total Ozone from GOME Observations in 1995–2002. Geophys. Res. Lett. 2003, 30, 389–401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Liao, Q. Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling. Remote Sens. 2025, 17, 2777. https://doi.org/10.3390/rs17162777
Chen T, Liao Q. Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling. Remote Sensing. 2025; 17(16):2777. https://doi.org/10.3390/rs17162777
Chicago/Turabian StyleChen, Tailong, and Qixiang Liao. 2025. "Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling" Remote Sensing 17, no. 16: 2777. https://doi.org/10.3390/rs17162777
APA StyleChen, T., & Liao, Q. (2025). Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling. Remote Sensing, 17(16), 2777. https://doi.org/10.3390/rs17162777