A Random Forest-Based CO2 Profile Emulator for Real-Time Prior Profile Generation in TanSat XCO2 Retrieval
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. ACGS/TanSat Observations
2.1.2. ERA5/EMCWF
2.1.3. MODIS/Aqua Data
2.1.4. Carbon Tracker Profile
2.1.5. TCCON Measurements
2.2. RF-CPE Model Development
2.2.1. Sensitivity Analysis and Feature Selection
2.2.2. Emulator Training and Feature Importance
2.3. XCO2 Retrieval Framework
2.3.1. Full Physics Retrieval Algorithm
2.3.2. Validation Strategy
3. Results and Discussion
3.1. RF-CPE Emulator Performance and Analysis
3.2. Improvement in XCO2 Retrieval Accuracy
3.3. Validation Against TCCON and Analysis of Regional Biases
3.4. Regional Spatiotemporal Distribution of XCO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tierney, J.E.; Poulsen, C.J.; Montañez, I.P.; Bhattacharya, T.; Feng, R.; Ford, H.L.; Hönisch, B.; Inglis, G.N.; Petersen, S.V.; Sagoo, N.; et al. Past climates inform our future. Science 2020, 370, eaay3701. [Google Scholar] [CrossRef]
- Nukusheva, A.; Ilyassova, G.; Rustembekova, D.; Zhamiyeva, R.; Arenova, L. Global warming problem faced by the international community: International legal aspect. Int. Environ. Agreements Politics Law Econ. 2021, 21, 219–233. [Google Scholar] [CrossRef]
- World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2023; Technical Report 20; World Meteorological Organization: Geneva, Switzerland, 2024.
- Ye, H.; Shi, H.; Li, C.; Wang, X.; Xiong, W.; An, Y.; Wang, Y.; Liu, L. A Coupled BRDF CO2 Retrieval Method for the GF-5 GMI and Improvements in the Correction of Atmospheric Scattering. Remote Sens. 2022, 14, 488. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Che, K.; Cai, Z.; Yang, D.; Wu, L. Satellite remote sensing of greenhouse gases: Progress and trends. Natl. Remote Sens. Bull. 2021, 25, 53–64. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef]
- Nakajima, M.; Suto, H.; Yotsumoto, K.; Shiomi, K.; Hirabayashi, T. Fourier transform spectrometer on GOSAT and GOSAT-2. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2014; Sodnik, Z., Cugny, B., Karafolas, N., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2017; Volume 10563, p. 105634O. [Google Scholar] [CrossRef]
- Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R.O.; Butz, A.; Haun, M.; Buijs, H.; Shiomi, K.; Imai, H.; Kuze, A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmos. Meas. Tech. 2021, 14, 2013–2039. [Google Scholar] [CrossRef]
- Imasu, R.; Matsunaga, T.; Nakajima, M.; Yoshida, Y.; Shiomi, K.; Morino, I.; Saitoh, N.; Niwa, Y.; Someya, Y.; Oishi, Y.; et al. Greenhouse gases Observing SATellite 2 (GOSAT-2): Mission overview. Prog. Earth Planet. Sci. 2023, 10, 33. [Google Scholar] [CrossRef]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). In Proceedings of the Earth Observing Systems XX, San Diego, CA, USA, 9–13 August 2015; Butler, J.J., Xiong, X.J., Gu, X., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9607, p. 960702. [Google Scholar] [CrossRef]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Somkuti, P.; Cheng, C.; Rosenberg, R.; Fisher, B.; Crisp, D.; Basilio, R.; et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 2020, 251, 112032. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef]
- Li, Z.; Xie, Y.; Shi, Y.; Li, Q.; Cohen, J.; Zhang, Y.; Han, Y.; Xiong, W.; Liu, Y. A review of collaborative remote sensing observation of greenhouse gases and aerosol with atmospheric environment satellites. Natl. Remote Sens. Bull. 2022, 26, 795–816. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Zou, M.; Xu, Q.; Li, L.; Li, X.; Tao, J. Overview of atmospheric CO2 remote sensing from space. J. Remote Sens. 2015, 19, 1–11. [Google Scholar] [CrossRef]
- Crevoisier, C.; Chédin, A.; Matsueda, H.; Machida, T.; Armante, R.; Scott, N.A. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 2009, 9, 4797–4810. [Google Scholar] [CrossRef]
- Miao, Y.; Zou, M.; Sheng, S.; Zhu, K.; Ding, W.; Lin, J.; Qu, Z.; Li, D. CO2 satellite inversion methocl based on machine learning. China Environ. Sci. 2023, 43, 20–27. [Google Scholar] [CrossRef]
- Chen, W.; Ren, T.; Zhao, C.; Wen, Y.; Gu, Y.; Zhou, M.; Wang, P. Transformer-Based Fast Mole Fraction of CO2 Retrievals from Satellite-Measured Spectra. J. Remote Sens. 2025, 5, 0470. [Google Scholar] [CrossRef]
- Wu, L.; Hasekamp, O.; Hu, H.; Landgraf, J.; Butz, A.; aan de Brugh, J.; Aben, I.; Pollard, D.F.; Griffith, D.W.T.; Feist, D.G.; et al. Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements. Atmos. Meas. Tech. 2018, 11, 3111–3130. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, H.; Liu, Y.; Chen, B.; Cai, Z.; Lü, D. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China. Adv. Atmos. Sci. 2017, 34, 965–976. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, L.; Wang, J.; Yang, D.; Cai, Z.; Lu, N.; Lyu, D. Application Status of carbon satellite data in China. Satell. Appl. 2022, 46–50. [Google Scholar] [CrossRef]
- Yang, D.; Boesch, H.; Liu, Y.; Somkuti, P.; Cai, Z.; Chen, X.; Di Noia, A.; Lin, C.; Lu, N.; Lyu, D.; et al. Toward High Precision XCO2 Retrievals from TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. J. Geophys. Res. Atmos. 2020, 125, e2020JD032794. [Google Scholar] [CrossRef]
- Buchwitz, M.; Rozanov, V.V.; Burrows, J.P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances. J. Geophys. Res. Atmos. 2000, 105, 15231–15245. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Heymann, J.; Bovensmann, H.; Burrows, J.P. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 2011, 11, 2863–2880. [Google Scholar] [CrossRef]
- Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Reuter, M.; Krings, T.; Gerilowski, K.; Schneising, O.; Heymann, J.; Tretner, A.; Erzinger, J. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos. Meas. Tech. 2010, 3, 781–811. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T.; Morino, I.; Yoshida, Y.; Matsunaga, T.; Belikov, D.; Wunch, D.; Wennberg, P.; Toon, G.; et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT. J. Geophys. Res. Atmos. 2012, 117, D12305. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Guanter, L.; McDuffie, J. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos. Meas. Tech. 2012, 5, 2081–2094. [Google Scholar] [CrossRef]
- Bösch, H.; Toon, G.C.; Sen, B.; Washenfelder, R.A.; Wennberg, P.O.; Buchwitz, M.; de Beek, R.; Burrows, J.P.; Crisp, D.; Christi, M.; et al. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. J. Geophys. Res. Atmos. 2006, 111, D23302. [Google Scholar] [CrossRef]
- Basu, S.; Krol, M.; Butz, A.; Clerbaux, C.; Sawa, Y.; Machida, T.; Matsueda, H.; Frankenberg, C.; Hasekamp, O.P.; Aben, I. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys. Res. Lett. 2014, 41, 1809–1815. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Cai, Z. A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data. Chin. Sci. Bull. 2013, 58, 1520–1523. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Cai, Z.; Deng, J.; Wang, J.; Chen, X. An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Sci. Bull. 2015, 60, 2063–2066. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Cai, Z.; Chen, X.; Yao, L.; Lu, D. First Global Carbon Dioxide Maps Produced from TanSat Measurements. Adv. Atmos. Sci. 2018, 35, 621–623. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, Y.; Wang, P.; Duan, M. A Review on the developments of NCEP, ECMWF and CMC global ensemble forecast system. Trans. Atmos. Sci. 2011, 34, 370. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. [Google Scholar] [CrossRef]
- Hyer, E.J.; Reid, J.S.; Zhang, J. An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmos. Meas. Tech. 2011, 4, 379–408. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Hu, K.; Feng, X.; Zhang, Q.; Shao, P.; Liu, Z.; Xu, Y.; Wang, S.; Wang, Y.; Wang, H.; Di, L.; et al. Review of Satellite Remote Sensing of Carbon Dioxide Inversion and Assimilation. Remote Sens. 2024, 16, 3394. [Google Scholar] [CrossRef]
- Mai, B.; Deng, X.; An, X.; Zhou, L.; Tan, H.; Li, F.; Li, N. Simulation of typical surface CO2 cases over Guangdong region base on Carbon Tracker numerical model. Acta Sci. Circumstantiae 2014, 34, 1833–1844. [Google Scholar] [CrossRef]
- Gao, H.; Gu, X.; Zhou, X.; Yu, T.; Wang, Y. Analysis of the development trend of Chinese remote sensing validation sites and infrastructure construction. Natl. Remote Sens. Bull. 2023, 27, 1088–1098. [Google Scholar] [CrossRef]
- Liang, A.; Gong, W.; Han, G.; Xiang, C. Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON. Remote Sens. 2017, 9, 1033. [Google Scholar] [CrossRef]
- Zhou, M.; Shu, J.; Song, C.; Gao, W. Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations. J. Appl. Remote Sens. 2014, 8, 083697. [Google Scholar] [CrossRef]
- Rong, P.; Zhang, C.; Liu, D.; Zhang, L.; Zhang, X.; Zhang, P.; Huyan, Z. Sensitivity analysis of an XCO2 retrieval algorithm for high-resolution short-wave infrared spectra. Optik 2020, 209, 164502. [Google Scholar] [CrossRef]
- Crisp, D.; Atlas, R.M.; Breon, F.M.; Brown, L.R.; Burrows, J.P.; Ciais, P.; Connor, B.J.; Doney, S.C.; Fung, I.Y.; Jacob, D.J.; et al. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 2004, 34, 700–709. [Google Scholar] [CrossRef]
- Nelson, R.R.; Kulawik, S.S.; O’Dell, C.W.; McDuffie, J.; Eldering, A. Improving OCO-2 XCO2 Retrievals Through the Scaling of Singular Value Decomposition-Based Temperature and Water Vapor Profiles. Earth Space Sci. 2025, 12, e2024EA003975. [Google Scholar] [CrossRef]
- Rozanov, V.; Buchwitz, M.; Eichmann, K.U.; de Beek, R.; Burrows, J. Sciatran—A new radiative transfer model for geophysical applications in the 240–2400 NM spectral region: The pseudo-spherical version. Adv. Space Res. 2002, 29, 1831–1835. [Google Scholar] [CrossRef]
- Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt. 2009, 48, 3322–3336. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; Final Report National Bureau of Standards; Institute for Basic Standards: Washington, DC, USA, 1977.
- Goody, R.M.; Yung, Y.L. Atmospheric Radiation: Theoretical Basis; Oxford University Press: Oxford, UK, 1989. [Google Scholar] [CrossRef]
- Mao, J.; Kawa, S.R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt. 2004, 43, 914–927. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests–Random Features. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar] [CrossRef]
- Ye, H.; Wang, X.; Wu, J.; Fang, Y. Error matrix construction method for atmospheric carbon dioxide Bayesian retrieval. Infrared Laser Eng. 2014, 43, 249–253. [Google Scholar]
- Li, R.; Zhou, X.; Cheng, T.; Tao, Z.; Gu, X.; Wang, N.; Zhang, H.; Lv, T. The Influence of Validation Colocation on XCO2 Satellite–Terrestrial Joint Observations. Remote Sens. 2023, 15, 5270. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data Set]. 2019. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mcd12q1-006 (accessed on 8 June 2025).
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.F.L.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech. 2021, 14, 6249–6304. [Google Scholar] [CrossRef]
- Morais Filho, L.F.F.; de Meneses, K.C.; de Araújo Santos, G.A.; da Silva Bicalho, E.; de Souza Rolim, G.; La Scala Jr, N. XCO2 temporal variability above Brazilian agroecosystems: A remote sensing approach. J. Environ. Manag. 2021, 288, 112433. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, J.; Gu, B.; Chen, Y. Carbon sink response of terrestrial vegetation ecosystems in the Yangtze River Delta and its driving mechanism. J. Geogr. Sci. 2024, 34, 112–130. [Google Scholar] [CrossRef]
- Chang, Z.; Fan, L.; Wigneron, J.P.; Wang, Y.P.; Ciais, P.; Chave, J.; Fensholt, R.; Chen, J.M.; Yuan, W.; Ju, W.; et al. Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019. J. Remote Sens. 2023, 3, 0005. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. Corrigendum: World Scientists’ Warning of a Climate Emergency. BioScience 2019, 70, 100. [Google Scholar] [CrossRef]
- Benton-Short, L.; Short, J.R. Cities and Nature; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Zhong, L.; Bao, D.; Sun, L.; Li, G. Full-Coverage Mapping of Daily High-Resolution XCO2 across China from 2015 to 2020 by Deep Learning-Based Spatio-Temporal Fusion. IEEE Trans. Geosci. Remote Sens. 2025. early access. [Google Scholar] [CrossRef]
- Watts, J.D.; Farina, M.; Kimball, J.S.; Schiferl, L.D.; Liu, Z.; Arndt, K.A.; Zona, D.; Ballantyne, A.; Euskirchen, E.S.; Parmentier, F.J.W.; et al. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Glob. Change Biol. 2023, 29, 1870–1889. [Google Scholar] [CrossRef]
Features and Advantages | Basic Principles | Algorithm Name |
---|---|---|
|
| WFM-DOAS [22] |
|
| BESD [24] |
|
| NIES [25] |
|
| PPDF [26] |
|
| ACOS [27] |
|
| UoL-FP [28] |
|
| RemoTeC [29] |
|
| IAPCAS [30,31] |
Index | Site Name | Longitude | Latitude | Country | Continent |
---|---|---|---|---|---|
1 | Burgos | 120.65°E | 18.53°N | Philippines | Asia |
2 | Hefei | 117.17°E | 31.90°N | China | |
3 | Saga | 130.29°E | 33.24°N | Japan | |
4 | Tsukuba | 140.12°E | 36.05°N | Japan | |
5 | Caltech | 118.13°W | 34.14°N | America | North America |
6 | East Trout Lake | 104.99°W | 54.36°N | Canada | |
7 | Lamont | 97.49°W | 36.60°N | America | |
8 | Park Falls | 90.27°W | 45.94°N | America | |
9 | Garmisch | 11.06°E | 47.48°N | Germany | Europe |
10 | Karlsruhe | 8.44°E | 49.10°N | Germany | |
11 | Orléans | 2.11°E | 47.96°N | France | |
12 | Paris | 2.36°E | 48.85°N | France | |
13 | Darwin | 130.89°E | 12.42°N | Australia | Oceania |
14 | Wollongong | 150.88°E | 34.41°S | Australia |
Index | Feature Value | Data Source |
---|---|---|
1 | wCO2 absorption band radiance | TanSat Nadir Observations |
2 | Surface pressure | ERA5/ECMWF |
3 | Temperature | ERA5/ECMWF |
4 | Wind-u | ERA5/ECMWF |
5 | Wind-v | ERA5/ECMWF |
6 | Total column water | ERA5/ECMWF |
7 | Humidity | ERA5/ECMWF |
8 | AOD | MODIS/MYD04_L2 |
9 | NDVI | MODIS/MYD13A3 |
10 | Reflectance | MODIS/MYD09GA |
Region | Data Volume | R2 | RMSE (ppm) | Std (ppm) |
---|---|---|---|---|
Asia | 109 | 0.68 | 1.85 | 1.73 |
North America | 343 | 0.84 | 2.26 | 1.69 |
Europe | 200 | 0.67 | 2.06 | 1.54 |
Oceania | 109 | 0.81 | 0.77 | 0.73 |
Total | 761 | 0.76 | 1.99 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wang, Y.; Zhang, L.; Jia, H.; Zhang, X.; Xu, L.; Dai, Y. A Random Forest-Based CO2 Profile Emulator for Real-Time Prior Profile Generation in TanSat XCO2 Retrieval. Remote Sens. 2025, 17, 2764. https://doi.org/10.3390/rs17162764
Wu S, Wang Y, Zhang L, Jia H, Zhang X, Xu L, Dai Y. A Random Forest-Based CO2 Profile Emulator for Real-Time Prior Profile Generation in TanSat XCO2 Retrieval. Remote Sensing. 2025; 17(16):2764. https://doi.org/10.3390/rs17162764
Chicago/Turabian StyleWu, Shaojie, Yang Wang, Likun Zhang, Heng Jia, Xianmei Zhang, Linglin Xu, and Yunxiao Dai. 2025. "A Random Forest-Based CO2 Profile Emulator for Real-Time Prior Profile Generation in TanSat XCO2 Retrieval" Remote Sensing 17, no. 16: 2764. https://doi.org/10.3390/rs17162764
APA StyleWu, S., Wang, Y., Zhang, L., Jia, H., Zhang, X., Xu, L., & Dai, Y. (2025). A Random Forest-Based CO2 Profile Emulator for Real-Time Prior Profile Generation in TanSat XCO2 Retrieval. Remote Sensing, 17(16), 2764. https://doi.org/10.3390/rs17162764