A Dynamic Global–Local Spatiotemporal Graph Framework for Multi-City PM2.5 Long-Term Forecasting
Abstract
1. Introduction
- (1)
- We propose an MS-iTransformer module to capture long-term trends in PM2.5 sequences. The time series of each station is fed into an individual iTransformer to learn station-specific temporal dependencies. The MS-iTransformer improves the accuracy and robustness of long-term forecasts by station-wise normalization and multi-station self-attention.
- (2)
- We propose a BSTA module to capture global spatiotemporal dynamic dependencies across all cities within a region. By integrating spatial and temporal bilinear attention mechanisms, BSTA adaptively constructs a dynamic Spatiotemporal Dynamic Graph (STDG) that models the evolving inter-city spatial correlations over time.
- (3)
- We propose a GESM to capture localized spatiotemporal dependencies for fine-grained air quality prediction. The GESM aggregates neighbor information via graph convolution and models short-term temporal dynamics using recurrent units to effectively learn local interaction patterns across both spatial and temporal dimensions.
2. Study Area and Available Data
3. Methodology
3.1. Global Temporal Feature Extraction
3.2. Global Spatiotemporal Dependency of Auxiliary Features
3.3. Local Spatiotemporal Feature Extraction
4. Experimental Setting and Results Analysis
4.1. Experimental Setting
4.2. Experimental Results and Analysis
4.2.1. Comparison Evaluation with Different Models
4.2.2. Comparison Forecast Performance in a Representative City
4.2.3. Comparison of Our Model and Existing Methods at Multiple Time Steps
4.2.4. Comparison of Model Runtime and Complexity
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Castro, E.; Wei, Y.; Jin, T.; Qiu, X.; Dominici, F.; Schwartz, J. Long-term exposure to ambient PM2.5, particulate constituents and hospital admissions from non-respiratory infection. Nat. Commun. 2024, 15, 1518. [Google Scholar] [CrossRef]
- Lim, S.; Bassey, E.; Bos, B.; Makacha, L.; Varaden, D.; Arku, R.E.; Baumgartner, J.; Brauer, M.; Ezzati, M.; Kelly, F.J.; et al. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM2.5 exposure. Sci. Total Environ. 2022, 833, 155207. [Google Scholar] [CrossRef]
- Han, D.; Guo, Y.; Wang, J.; Zhao, B. Global disparities in indoor wildfire-PM2.5 exposure and mitigation costs. Sci. Adv. 2025, 11, eads4360. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kang, Y.; Kim, E.; Kim, S.; Kim, S. A multifaceted approach to explain short-and long-term PM2.5 concentration changes in Northeast Asia in the month of January during 2016–2021. Sci. Total Environ. 2023, 880, 163309. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, J.; Li, Z.; Kondragunta, S.; Anenberg, S.; Wang, Y.; Zhang, H.; Diner, D.; Hand, J.; Lyapustin, A.; et al. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: A deep learning modelling study. Lancet Planet. Health 2023, 7, e963–e975. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.D.; Liu, P.Y.; Huang, C.W.; Lin, Y.H. The application of strategy based on LSTM for the short-term prediction of PM2.5 in city. Sci. Total Environ. 2024, 906, 167892. [Google Scholar] [CrossRef]
- Zhu, S.; Tang, J.; Zhou, X.; Li, P.; Liu, Z.; Zhang, C.; Zou, Z.; Li, T.; Peng, C. Research progress, challenges, and prospects of PM2. 5 concentration estimation using satellite data. Environ. Rev. 2023, 31, 605–631. [Google Scholar] [CrossRef]
- Ma, Z.; Dey, S.; Christopher, S.; Liu, R.; Bi, J.; Balyan, P.; Liu, Y. A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sens. Environ. 2022, 269, 112827. [Google Scholar] [CrossRef]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2. [Google Scholar]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; MIT Press: Cambridge, MA, USA, 2012; pp. 37–45. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Waqas, M.; Humphries, U.W. A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, J.; Zhang, S.; Zhang, S.; Yan, M.; Xiong, H. Expanding the prediction capacity in long sequence time-series forecasting. Artif. Intell. 2023, 318, 103886. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, F.; Zhao, J.; Zheng, H. Attention-based parallel networks (APNet) for PM2.5 spatiotemporal prediction. Sci. Total Environ. 2021, 769, 145082. [Google Scholar] [CrossRef]
- Fang, S.; Li, Q.; Karimian, H.; Liu, H.; Mo, Y. DESA: A novel hybrid decomposing-ensemble and spatiotemporal attention model for PM2.5 forecasting. Environ. Sci. Pollut. Res. 2022, 29, 54150–54166. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Cao, H.; Thé, J.; Tan, Z.; Yu, H. Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial–temporal attention and residual learning. Environ. Int. 2023, 171, 107691. [Google Scholar] [CrossRef] [PubMed]
- Teutscher, D.; Bukreev, F.; Kummerländer, A.; Simonis, S.; Bächler, P.; Rezaee, A.; Hermansdorfer, M.; Krause, M.J. A digital urban twin enabling interactive pollution predictions and enhanced planning. Build. Environ. 2025, 281, 113093. [Google Scholar] [CrossRef]
- Zhang, D.; Martin, R.V.; Bindle, L.; Li, C.; Eastham, S.D.; van Donkelaar, A.; Gallardo, L. Advances in simulating the global spatial heterogeneity of air quality and source sector contributions: Insights into the global South. Environ. Sci. Technol. 2023, 57, 6955–6964. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wang, Y.; Zhang, L.; Yi, Z.; Zhang, H.; Mathiopoulos, P.T. A spatiotemporal interpolation graph convolutional network for estimating PM2.5 concentrations based on urban functional zones. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–14. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef]
- Jin, M.; Koh, H.Y.; Wen, Q.; Zambon, D.; Alippi, C.; Webb, G.I.; King, I.; Pan, S. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10466–10485. [Google Scholar] [CrossRef]
- Peng, H.; Wang, H.; Du, B.; Bhuiyan, M.Z.A.; Ma, H.; Liu, J.; Wang, L.; Yang, Z.; Du, L.; Wang, S.; et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 2020, 521, 277–290. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Peng, L.; Zhang, D.; Yang, C.; Li, K.C. Predicting drug-target interactions via dual-stream graph neural network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 21, 948–958. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Han, N.; Yang, A.; Liu, X.; Cai, H. A survey of drug-target interaction and affinity prediction methods via graph neural networks. Comput. Biol. Med. 2023, 163, 107136. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mallik, A.; Khetarpal, A.; Panda, B.S. Influence maximization in social networks using graph embedding and graph neural network. Inf. Sci. 2022, 607, 1617–1636. [Google Scholar] [CrossRef]
- Sharma, K.; Lee, Y.C.; Nambi, S.; Salian, A.; Shah, S.; Kim, S.W.; Kumar, S. A survey of graph neural networks for social recommender systems. ACM Comput. Surv. 2024, 56, 1–34. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Dai, Q.; Zhou, H.Y.; Xu, M.; Yang, S.; Han, X.; Yu, Y. A survey on graph neural networks and graph transformers in computer vision: A task-oriented perspective. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10297–10318. [Google Scholar] [CrossRef]
- Klepl, D.; Wu, M.; He, F. Graph neural network-based eeg classification: A survey. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 493–503. [Google Scholar] [CrossRef]
- Ye, Y.; Cao, Y.; Dong, Y.; Yan, H. A Graph Neural Network and Transformer-based model for PM2.5 prediction through spatiotemporal correlation. Environ. Model. Softw. 2025, 191, 106501. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Zhang, S.; Yuan, K.; Huang, J.; Shi, D.; Hu, S. Regional PM2.5 prediction with hybrid directed graph neural networks and Spatio-temporal fusion of meteorological factors. Environ. Pollut. 2025, 366, 125404. [Google Scholar] [CrossRef]
- Chang-Silva, R.; Tariq, S.; Loy-Benitez, J.; Yoo, C. Smart solutions for urban health risk assessment: A PM2.5 monitoring system incorporating spatiotemporal long-short term graph convolutional network. Chemosphere 2023, 335, 139071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, S.; Wu, Y.; Zhu, X.; Shen, W. A long-term prediction method for PM2.5 concentration based on spatiotemporal graph attention recurrent neural network and grey wolf optimization algorithm. J. Environ. Chem. Eng. 2024, 12, 111716. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Sheng, H.; Shen, Y.; Xie, W.; Zhu, X. Long-term prediction method for PM2.5 concentration using edge channel graph attention network and gating closed-form continuous-time neural networks. Process Saf. Environ. Prot. 2024, 189, 356–373. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, X.; Shi, J.; He, H.; Wang, Q. A PM2.5 spatiotemporal prediction model based on mixed graph convolutional GRU and self-attention network. Environ. Pollut. 2025, 368, 125748. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J. Multivariate time series prediction based on temporal change information learning method. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7034–7048. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Dong, F.; Chen, K.; Xia, H. A multi-graph spatial-temporal attention network for air-quality prediction. Process Saf. Environ. Prot. 2024, 181, 442–451. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Z.; Zhang, S.; Chen, C.; Yuan, J.; Yao, J.; Zhao, S.; Guo, L. Learning spatiotemporal dependencies using adaptive hierarchical graph convolutional neural network for air quality prediction. J. Clean. Prod. 2024, 459, 142541. [Google Scholar] [CrossRef]
- Liu, X.; Chang, M.; Zhang, J.; Wang, J.; Gao, H.; Gao, Y.; Yao, X. Rethinking the causes of extreme heavy winter PM2.5 pollution events in northern China. Sci. Total Environ. 2021, 794, 148637. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, J.; Meng, Q.; Meng, L.; Gao, F. PM2.5-gnn: A domain knowledge enhanced graph neural network for PM2.5 forecasting. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020; pp. 163–166. [Google Scholar]
- Pang, N.; Gao, J.; Che, F.; Ma, T.; Liu, S.; Yang, Y.; Zhao, P.; Yuan, J.; Liu, J.; Xu, Z.; et al. Cause of PM2.5 pollution during the 2016-2017 heating season in Beijing, Tianjin, and Langfang, China. J. Environ. Sci. 2020, 95, 201–209. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the NIPS′17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef]
- Kipf, T.N. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Abuouelezz, W.; Ali, N.; Aung, Z.; Altunaiji, A.; Shah, S.B.; Gliddon, D. Exploring PM2.5 and PM10 ML forecasting models: A comparative study in the UAE. Sci. Rep. 2025, 15, 9797. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Chen, Y.C.; Chou, T.Y.; Ning, F.S. PM2.5 concentration prediction model: A CNN–RF ensemble framework. Int. J. Environ. Res. Public Health 2023, 20, 4077. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing 2021, 441, 161–178. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef] [PubMed]
Nodes | Edges Feature | Unit |
---|---|---|
Nodes | k_index | K |
2 m_temperature | K | |
surface_pressure | Pa | |
total_precipitation | m | |
boundary_layer_height | m | |
relative_humidity + 950 | % | |
u_component_of_wind + 950 | m/s | |
v_component_of_wind + 950 | m/s | |
Edges | ) | km/h |
) | ) | |
) | ) | |
) | km | |
advection_coeffient |
Dataset | Training Set | Validation Set | Test Set |
---|---|---|---|
Dataset 1 | 1 January 2015–31 December 2016 | 31 December 2016–31 December 2017 | 31 December 2017–31 December 2018 |
Dataset 2 | 1 November 2015–28 February 2016 | 1 November 2016–28 February 2017 | 1 November 2017–28 February 2018 |
Dataset 3 | 1 September 2016–30 November 2016 | 30 November 2016–30 December 2016 | 30 December 2016–31 January 2017 |
Dataset | Model | Train Loss | Validate Loss | Test Loss | MAE | RMSE | CSI | FAR | R2 |
---|---|---|---|---|---|---|---|---|---|
1 | MLP | 0.5624 ±0.0085 | 0.5269 ±0.0088 | 0.5537 ±0.0092 | 18.1240 ±0.1940 | 22.6306 ±0.1950 | 0.4252 ±0.0047 | 0.3502 ±0.0145 | 0.4651 ±0.0089 |
LSTM | 0.4229 ±0.0037 | 0.4287 ±0.0017 | 0.4571 ±0.0024 | 16.1657 ±0.1289 | 20.4499 ±0.1110 | 0.4615 ±0.0037 | 0.3038 ±0.0079 | 0.5585 ±0.0023 | |
GRU | 0.4286 ±0.0020 | 0.4266 ±0.0021 | 0.4512 ±0.0018 | 16.0839 ±0.1229 | 20.3553 ±0.1049 | 0.4653 ±0.0042 | 0.3029 ±0.0110 | 0.5642 ±0.0017 | |
GC-LSTM | 0.4098 ±0.0030 | 0.4206 ±0.0016 | 0.4411 ±0.0031 | 15.9462 ±0.1132 | 20.1977 ±0.1063 | 0.4702 ±0.0046 | 0.3049 ±0.0138 | 0.5739 ±0.0030 | |
PM2.5-GNN | 0.3972 ±0.0042 | 0.3987 ±0.0035 | 0.4185 ±0.0042 | 15.4801 ±0.1412 | 19.6491 ±0.1355 | 0.4852 ±0.0036 | 0.2897 ±0.0114 | 0.5957 ±0.0041 | |
GWO-GART | 0.3621 ±0.0043 | 0.4013 ±0.0038 | 0.4229 ±0.0041 | 15.3649 ±0.1534 | 19.6826 ±0.1415 | 0.4891 ±0.0046 | 0.2753 ±0.0155 | 0.5912 ±0.0039 | |
EGCFC | 0.3384 ±0.0081 | 0.3858 ±0.0032 | 0.3997 ±0.0038 | 14.8373 ±0.0050 | 19.0834 ±0.1511 | 0.4959 ±0.0049 | 0.2567 ±0.0150 | 0.6168 ±0.0045 | |
ours | 0.3567 ±0.0034 | 0.3601 ±0.0017 | 0.3756 ±0.0018 | 14.0836 ±0.0676 | 18.3083 ±0.0851 | 0.5030 ±0.0068 | 0.2295 ±0.0093 | 0.6327 ±0.0044 |
Dataset | Model | Train Loss | Validate Loss | Test Loss | MAE | RMSE | CSI | FAR | R2 |
---|---|---|---|---|---|---|---|---|---|
2 | MLP | 0.6409 ±0.0066 | 0.6372 ±0.0083 | 0.6523 ±0.0096 | 28.4975 ±0.3455 | 35.1934 ±0.3549 | 0.4628 ±0.0116 | 0.3081 ±0.0116 | 0.3770 ±0.0092 |
LSTM | 0.4464 ±0.0140 | 0.5172 ±0.0065 | 0.5459 ±0.0107 | 25.8818 ±0.3199 | 32.3494 ±0.3496 | 0.5114 ±0.0090 | 0.2975 ±0.0076 | 0.4785 ±0.0102 | |
GRU | 0.4584 ±0.0070 | 0.5068 ±0.0031 | 0.5333 ±0.0065 | 25.4581 ±0.2491 | 31.8953 ±0.2443 | 0.5142 ±0.0059 | 0.2958 ±0.0097 | 0.4906 ±0.0062 | |
GC-LSTM | 0.4336 ±0.0102 | 0.5136 ±0.0055 | 0.5410 ±0.0098 | 25.7895 ±0.2607 | 32.2493 ±0.2876 | 0.5125 ±0.0065 | 0.2933 ±0.0082 | 0.4832 ±0.0093 | |
PM2.5-GNN | 0.4379 ±0.0079 | 0.4855 ±0.0032 | 0.5110 ±0.0044 | 24.9161 ±0.2012 | 31.2798 ±0.1915 | 0.5258 ±0.0052 | 0.2906 ±0.0086 | 0.511 ±0.0042 | |
GWO-GART | 0.4319 ±0.0068 | 0.4847 ±0.0031 | 0.4941 ±0.0042 | 24.1134 ±0.1944 | 30.5662 ±0.1871 | 0.5338 ±0.0053 | 0.2729 ±0.0083 | 0.5285 ±0.0043 | |
EGCFC | 0.4005 ±0.0072 | 0.4787 ±0.0032 | 0.4912 ±0.0042 | 23.9113 ±0.1932 | 30.3868 ±0.1862 | 0.5493 ±0.0054 | 0.2650 ±0.0084 | 0.5314 ±0.0044 | |
ours | 0.3477 ±0.0112 | 0.4429 ±0.0025 | 0.4542 ±0.0076 | 22.8264 ±0.3842 | 29.3321 ±0.3881 | 0.5396 ±0.0123 | 0.2210 ±0.0111 | 0.5502 ±0.0115 |
Dataset | Model | Train Loss | Validate Loss | Test Loss | MAE | RMSE | CSI | FAR | R2 |
---|---|---|---|---|---|---|---|---|---|
3 | MLP | 0.6229 ±0.0101 | 0.7502 ±0.0171 | 0.5570 ±0.0108 | 38.1941 ±0.3776 | 46.4208 ±0.3766 | 0.5665 ±0.0050 | 0.3125 ±0.0094 | 0.4110 ±0.0114 |
LSTM | 0.4386 ±0.0060 | 0.5471 ±0.0066 | 0.4862 ±0.0124 | 36.3341 ±0.6214 | 44.3482 ±0.6369 | 0.6096 ±0.0038 | 0.3070 ±0.0054 | 0.4859 ±0.0131 | |
GRU | 0.4600 ±0.0113 | 0.5525 ±0.0104 | 0.4717 ±0.0082 | 35.8335 ±0.3977 | 43.706 ±0.4276 | 0.6105 ±0.0039 | 0.3091 ±0.0079 | 0.5012 ±0.0086 | |
GC-LSTM | 0.4358 ±0.0068 | 0.5535 ±0.0124 | 0.4822 ±0.0100 | 36.2248 ±0.5390 | 44.2294 ±0.5000 | 0.6055 ±0.0040 | 0.3099 ±0.0073 | 0.4901 ±0.0106 | |
PM2.5-GNN | 0.4401 ±0.0081 | 0.5147 ±0.0086 | 0.4636 ±0.0128 | 35.1663 ±0.6300 | 42.9891 ±0.6633 | 0.6168 ±0.0031 | 0.3063 ±0.0077 | 0.5097 ±0.0135 | |
GWO-GART | 0.4125 ±0.0076 | 0.5034 ±0.0084 | 0.4462 ±0.0123 | 34.3 ±0.6151 | 42.52 ±0.6570 | 0.6276 ±0.0032 | 0.2956 ±0.0074 | 0.5278 ±0.0139 | |
EGCFC | 0.3945 ±0.0073 | 0.4913 ±0.0082 | 0.4311 ±0.0119 | 32.9 ±0.5896 | 41.17 ±0.6352 | 0.6338 ±0.0032 | 0.2635 ± 0.0066 | 0.5467 ±0.0145 | |
ours | 0.3690 ±0.0194 | 0.4585 ±0.0041 | 0.4322 ±0.0073 | 31.1335 ±0.5273 | 39.3122 ±0.5665 | 0.6532 ±0.0074 | 0.2323 ±0.0116 | 0.5727 ±0.0136 |
Model | Metric | +3 h | +6 h | +12 h | +24 h | +36 h | +48 h | +60 h | +72 h |
---|---|---|---|---|---|---|---|---|---|
MLP | MAE | 11.1459 | 18.0483 | 25.8614 | 32.5212 | 35.6843 | 37.3319 | 37.4012 | 38.1941 |
RMSE | 15.7626 | 23.7607 | 32.4327 | 39.9506 | 43.6865 | 45.7564 | 45.1916 | 46.4208 | |
LSTM | MAE | 10.0366 | 15.9801 | 22.7599 | 29.0874 | 32.6889 | 34.7104 | 34.8446 | 36.3341 |
RMSE | 14.1938 | 21.1434 | 28.8040 | 36.1058 | 40.4199 | 42.9563 | 42.3574 | 44.3482 | |
GRU | MAE | 10.1385 | 16.0489 | 22.6351 | 28.8163 | 32.4622 | 34.3892 | 34.7412 | 35.8335 |
RMSE | 14.3379 | 21.2472 | 28.6710 | 35.7979 | 40.1031 | 42.5039 | 42.2465 | 43.7062 | |
GC-LSTM | MAE | 10.2688 | 16.0763 | 22.5396 | 28.7403 | 32.3440 | 34.6697 | 34.9810 | 36.2248 |
RMSE | 14.5223 | 21.2557 | 28.5414 | 35.7349 | 40.0674 | 42.9681 | 42.5618 | 44.2294 | |
PM2.5-GNN | MAE | 9.9502 | 15.7211 | 21.9645 | 27.9514 | 31.8948 | 33.6419 | 33.9457 | 35.1663 |
RMSE | 14.0718 | 20.8274 | 27.8935 | 34.8443 | 39.4647 | 41.7387 | 41.3908 | 42.9891 | |
GWO-GART | MAE | 9.7014 | 15.3325 | 21.4217 | 27.2566 | 31.1105 | 32.7984 | 33.1064 | 34.3000 |
RMSE | 13.7721 | 20.3798 | 27.2782 | 34.0619 | 38.5830 | 40.8396 | 41.5091 | 42.5200 | |
EGCFC | MAE | 9.5024 | 15.0137 | 20.9761 | 26.6936 | 30.4595 | 32.1280 | 32.4181 | 33.5838 |
RMSE | 13.6028 | 20.1214 | 26.9477 | 33.6629 | 38.1245 | 40.3239 | 40.9876 | 41.1700 | |
Ours | MAE | 9.4753 | 14.8783 | 20.8946 | 26.3614 | 29.1230 | 31.0708 | 30.6332 | 31.1335 |
RMSE | 13.4000 | 19.8016 | 26.7688 | 33.3437 | 36.9280 | 39.5794 | 38.4296 | 39.3122 |
Model | Metric | +3 h | +6 h | +12 h | +24 h | +36 h | +48 h | +60 h | +72 h |
---|---|---|---|---|---|---|---|---|---|
MLP | CSI | 0.8803 | 0.8071 | 0.7240 | 0.6516 | 0.6110 | 0.5922 | 0.5821 | 0.5665 |
FAR | 0.0582 | 0.1042 | 0.1667 | 0.2304 | 0.2637 | 0.2856 | 0.3037 | 0.3125 | |
LSTM | CSI | 0.8914 | 0.8298 | 0.7628 | 0.6974 | 0.6579 | 0.6331 | 0.6252 | 0.6096 |
FAR | 0.0627 | 0.1054 | 0.1506 | 0.2048 | 0.2409 | 0.2665 | 0.2916 | 0.3070 | |
GRU | CSI | 0.8897 | 0.8270 | 0.7617 | 0.7006 | 0.6598 | 0.6374 | 0.6274 | 0.6105 |
FAR | 0.0616 | 0.1038 | 0.1545 | 0.2089 | 0.2474 | 0.2715 | 0.2928 | 0.3091 | |
GC-LSTM | CSI | 0.8895 | 0.8272 | 0.7631 | 0.7001 | 0.6597 | 0.6318 | 0.6208 | 0.6055 |
FAR | 0.0590 | 0.1030 | 0.1510 | 0.2038 | 0.2428 | 0.2709 | 0.2943 | 0.3099 | |
PM2.5-GNN | CSI | 0.8917 | 0.8303 | 0.7692 | 0.7091 | 0.6692 | 0.6476 | 0.6322 | 0.6168 |
FAR | 0.0619 | 0.1084 | 0.1543 | 0.2034 | 0.2504 | 0.2674 | 0.2895 | 0.3063 | |
GWO-GART | CSI | 0.8920 | 0.8319 | 0.7702 | 0.7101 | 0.6716 | 0.6553 | 0.6411 | 0.6276 |
FAR | 0.0608 | 0.1073 | 0.1531 | 0.1914 | 0.2485 | 0.2511 | 0.2595 | 0.2956 | |
EGCFC | CSI | 0.8929 | 0.8332 | 0.7735 | 0.7100 | 0.6753 | 0.6623 | 0.6442 | 0.6338 |
FAR | 0.0636 | 0.1043 | 0.1550 | 0.1814 | 0.2359 | 0.2393 | 0.2493 | 0.2635 | |
Ours | CSI | 0.8961 | 0.8399 | 0.7788 | 0.7232 | 0.6910 | 0.6641 | 0.6596 | 0.6532 |
FAR | 0.0550 | 0.0886 | 0.1204 | 0.1647 | 0.1889 | 0.2031 | 0.2172 | 0.2323 |
Model | +3 h | +6 h | +12 h | +24 h | +36 h | +48 h | +60 h | +72 h |
---|---|---|---|---|---|---|---|---|
MLP | 0.8929 | 0.7988 | 0.6708 | 0.5443 | 0.4786 | 0.4385 | 0.4365 | 0.4110 |
LSTM | 0.9069 | 0.8318 | 0.7301 | 0.6265 | 0.5581 | 0.5147 | 0.5272 | 0.4859 |
GRU | 0.9063 | 0.8308 | 0.7321 | 0.6293 | 0.5605 | 0.5231 | 0.5268 | 0.5012 |
GC-LSTM | 0.9059 | 0.8329 | 0.7366 | 0.6340 | 0.5649 | 0.5168 | 0.5233 | 0.4901 |
PM2.5-GNN | 0.9094 | 0.8390 | 0.7465 | 0.6456 | 0.5749 | 0.5352 | 0.5395 | 0.5097 |
GART | 0.9091 | 0.8487 | 0.7483 | 0.6461 | 0.5821 | 0.5467 | 0.5532 | 0.5278 |
EGCFC | 0.9092 | 0.8443 | 0.7518 | 0.6498 | 0.5946 | 0.5655 | 0.5769 | 0.5467 |
ours | 0.9123 | 0.8435 | 0.7522 | 0.6595 | 0.6058 | 0.5687 | 0.5813 | 0.5727 |
Model | Runtime (s) | FLOPs (G) | Params (M) |
---|---|---|---|
MLP | 395.36 | 0.104 | 0.001 |
GRU | 369.08 | 0.932 | 0.007 |
LSTM | 334.44 | 1.221 | 0.009 |
GC_LSTM | 631.06 | 0.837 | 0.006 |
PM2.5-GNN | 832.31 | 51.330 | 0.020 |
GWO-GART | 108,000 | 52.430 | 0.091 |
EGCFC | 1125.36 | 55.430 | 0.103 |
Ours | 1001.20 | 52.008 | 0.090 |
Dataset | Model | MAE | RMSE | CSI | FAR | R2 |
---|---|---|---|---|---|---|
1 | Baseline | 15.4801 ±0.1412 | 19.6491 ±0.1355 | 0.4852 ±0.0036 | 0.2897 ±0.0114 | 0.5957 ±0.0041 |
w/o GESM | 14.1623 ±0.0656 | 18.4013 ±0.0707 | 0.5018 ±0.0095 | 0.2392 ±0.0162 | 0.6303 ±0.0042 | |
w/o MS-iTransformer | 14.1053 ±0.0618 | 18.3386 ±0.0653 | 0.5017 ±0.0068 | 0.2348 ±0.0124 | 0.6324 ±0.0030 | |
Ours | 14.0836 ±0.0676 | 18.3083 ±0.0851 | 0.5030 ±0.0068 | 0.2295 ±0.0093 | 0.6327 ±0.0044 | |
2 | Baseline | 24.9161 ±0.2012 | 31.2798 ±0.1915 | 0.5258 ±0.0052 | 0.2906 ±0.0086 | 0.5119 ±0.0042 |
w/o GESM | 22.9963 ±0.2168 | 29.5258 ±0.2950 | 0.5365 ±0.0073 | 0.2349 ±0.0063 | 0.5477 ±0.0099 | |
w/o MS-iTransformer | 22.8453 ±0.2401 | 29.3219 ±0.2482 | 0.5393 ±0.0125 | 0.2238 ±0.0168 | 0.5486 ±0.0101 | |
Ours | 22.8264 ±0.3842 | 29.3321 ±0.3881 | 0.5396 ±0.0123 | 0.2210 ±0.0111 | 0.5502 ±0.0115 | |
3 | Baseline | 35.1663 ±0.6300 | 42.9891 ±0.6633 | 0.6168 ±0.0031 | 0.3063 ±0.0077 | 0.5097 ±0.0135 |
w/o GESM | 32.4696 ±0.5980 | 40.5141 ±0.5914 | 0.6330 ±0.0073 | 0.2566 ±0.0128 | 0.5542 ±0.0139 | |
w/o MS-iTransformer | 32.2708 ±0.4987 | 40.4062 ±0.5761 | 0.6388 ±0.0061 | 0.2470 ±0.0153 | 0.5500 ±0.0139 | |
Ours | 31.1335 ±0.5273 | 39.3122 ±0.5665 | 0.6532 ±0.0074 | 0.2323 ±0.0116 | 0.5727 ±0.0136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhu, X.; Wang, R.; Xie, Y.; Fong, S. A Dynamic Global–Local Spatiotemporal Graph Framework for Multi-City PM2.5 Long-Term Forecasting. Remote Sens. 2025, 17, 2750. https://doi.org/10.3390/rs17162750
Huang Y, Zhu X, Wang R, Xie Y, Fong S. A Dynamic Global–Local Spatiotemporal Graph Framework for Multi-City PM2.5 Long-Term Forecasting. Remote Sensing. 2025; 17(16):2750. https://doi.org/10.3390/rs17162750
Chicago/Turabian StyleHuang, Yao, Xianxun Zhu, Rui Wang, Yanan Xie, and Simon Fong. 2025. "A Dynamic Global–Local Spatiotemporal Graph Framework for Multi-City PM2.5 Long-Term Forecasting" Remote Sensing 17, no. 16: 2750. https://doi.org/10.3390/rs17162750
APA StyleHuang, Y., Zhu, X., Wang, R., Xie, Y., & Fong, S. (2025). A Dynamic Global–Local Spatiotemporal Graph Framework for Multi-City PM2.5 Long-Term Forecasting. Remote Sensing, 17(16), 2750. https://doi.org/10.3390/rs17162750