A Novel Method for Single-Station Lightning Distance Estimation Based on the Physical Time Reversal
Abstract
1. Introduction
2. Theory and Methods
2.1. ADE-FDTD Numerical Model and Configuration for Calculating Sferics
2.2. Single-Station Lightning Distance Estimation Based on the PTR Method
2.3. Experimental Setup and Data
3. Numerical Results and Simulation Analysis
3.1. Accuracy Test of the ADE-FDTD
3.2. Analysis of the Sferics Signal Propagating in the EIWG
3.3. Simulation Configuration for Single-Station Lightning Distance Estimation by PTR Method
3.4. Analysis of Single-Station Lightning Distance Estimation by PTR Method
4. Analysis of Distance Estimation for Natural Lightning Strikes to the Tall Tower
5. Conclusions
- The ADE-FDTD numerical model that takes into account the effects of the complex environment of the EWIG for calculating the sferics of lightning strikes can be applicable to different diurnal periods after adopting the measured ionospheric parameters of IRI2020. The comparison with the measured sferics signals demonstrates that the ADE-FDTD is able to provide high-precision numerical results for the calculation of sferics signals. Moreover, the physical process of the PTR method in the back propagation can be accurately reconstructed by ADE-FDTD, which is the key numerical way to realize the single-station lightning distance estimation.
- Essentially, the multipath effect of the sferics signal serves as a prerequisite for being able to utilize the PTR method for single-station lightning distance estimation. The proposed spreading factor utilizes the full waveform information to identify the focus in the single-station location while using the PTR method. This innovation directly correlates the focusing point with distance and enhances the criterion accuracy.
- The detection experiment of the lightning strikes to the Canton Tower events can provide precise reference results for the examination of the PTR method, as the exact locations of the lightning strikes are already known. Both simulations and experimental results demonstrate that the PTR method performs effectively for multiple lightning strike cases from the eight stations at varying distances, highlighting the universality of the method.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finney, D.L. Lightning threatens permafrost. Nat. Clim. Change 2021, 11, 379–380. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J. An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518. [Google Scholar] [CrossRef]
- Yoshida, S.; Wu, T.; Ushio, T.; Kusunoki, K.; Nakamura, Y. Initial results of LF sensor network for lightning observation and characteristics of lightning emission in LF band. J. Geophys. Res. Atmos. 2014, 119, 12034–12051. [Google Scholar] [CrossRef]
- Poelman, D.R.; Schulz, W. Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS). Atmos. Meas. Tech. 2020, 13, 2965–2977. [Google Scholar] [CrossRef]
- Inan, U.S.; Cummer, S.A.; Marshall, R.A. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. Space Phys. 2010, 115, A00E36. [Google Scholar] [CrossRef]
- Said, R.K.; Inan, U.S.; Cummins, K.L. Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res. Atmos. 2010, 115, D23108. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Atmos. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET—An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- Schulz, W.; Diendorfer, G.; Pedeboy, S.; Poelman, D.R. The European lightning location system EUCLID—Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci. 2016, 16, 595–605. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Li, Z.; Wang, Z. A verification of the lightning detection data from FY-4A LMI as compared with ADTD-2. Atmos. Res. 2021, 248, 105163. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Lightning Mapping With an Array of Fast Antennas. Geophys. Res. Lett. 2018, 45, 3698–3705. [Google Scholar] [CrossRef]
- Pohjola, H.; Mäkelä, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 2013, 123, 117–128. [Google Scholar] [CrossRef]
- Nagano, I.; Yagitani, S.; Ozaki, M.; Nakamura, Y.; Miyamura, K. Estimation of lightning location from single station observations of sferics. Electron. Commun. Jpn. 2007, 90, 25–34. [Google Scholar] [CrossRef]
- Ramachandran, V.; Prakash, J.N.; Deo, A.; Kumar, S. Lightning stroke distance estimation from single station observation and validation with WWLLN data. Ann. Geophys. 2007, 25, 1509–1517. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, F.; Yuan, S.; Song, J.; Ma, Q.; Zhou, X. A novel method for ground-based VLF/LF single-site lightning location. Measurement 2022, 196, 111208. [Google Scholar] [CrossRef]
- de Sá, A.L.A.; Marshall, R.A. Lightning Distance Estimation Using LF Lightning Radio Signals via Analytical and Machine-Learned Models. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5892–5907. [Google Scholar]
- Horner, F. The design and use of instruments for counting local lightning flashes. Proc. IEE Part B Electron. Commun. Eng. 1960, 107, 321–330. [Google Scholar] [CrossRef]
- Burke, C.P.; Jones, D.L. Global radiolocation in the lower ELF frequency band. J. Geophys. Res. Atmos. 1995, 100, 26263–26271. [Google Scholar] [CrossRef]
- Chen, M.; Lu, T.; Du, Y. Properties of “site error” of lightning direction-finder (DF) and its modeling. Atmos. Res. 2013, 129–130, 97–109. [Google Scholar] [CrossRef]
- Sao, K.; Jindoh, H. Real time location of atmospherics by single station techniques and preliminary results. J. Atmos. Terr. Phys. 1974, 36, 261–266. [Google Scholar] [CrossRef]
- Koochak, Z.; Fraser-Smith, A. Single-Station Lightning Location Using Azimuth and Time of Arrival of Sferics. Radio Sci. 2020, 55, e2018RS006627. [Google Scholar] [CrossRef]
- Mostajabi, A.; Karami, H.; Azadifar, M.; Ghasemi, A.; Rubinstein, M.; Rachidi, F. Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning. Sci. Rep. 2019, 9, 17372. [Google Scholar] [CrossRef]
- Hu, W.; Cummer, S.A. An FDTD model for low and high altitude lightning-generated EM fields. IEEE Trans. Antennas Propag. 2006, 54, 1513–1522. [Google Scholar] [CrossRef]
- Tran, T.H.; Baba, Y.; Somu, V.B.; Rakov, V.A. FDTD Modeling of LEMP Propagation in the Earth-Ionosphere Waveguide With Emphasis on Realistic Representation of Lightning Source. J. Geophys. Res. Atmos. 2017, 122, 12918–12937. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Z.; Si, Q.; Shi, L. A New Method for High-Precision Lightning Return Strokes Location Based on Time Reversal With the Physical Propagation Model. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–16. [Google Scholar] [CrossRef]
- Mora, N.; Rachidi, F.; Rubinstein, M. Application of the time reversal of electromagnetic fields to locate lightning discharges. Atmos. Res. 2012, 117, 78–85. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, S.; Shi, L.H.; Li, Y. Broadband VHF Localization of Lightning Radiation Sources by EMTR. IEEE Trans. Electromagn. Compat. 2017, 59, 1949–1957. [Google Scholar] [CrossRef]
- Chen, Z.F.; Zhang, Y.; Zheng, D.; Zhang, Y.J.; Fan, X.P.; Fan, Y.F.; Xu, L.T.; Lyu, W.T. A Method of Three-Dimensional Location for LFEDA Combining the Time of Arrival Method and the Time Reversal Technique. J. Geophys. Res. Atmos. 2019, 124, 6484–6500. [Google Scholar] [CrossRef]
- Karami, H.; Azadifar, M.; Mostajabi, A.; Rubinstein, M.; Rachidi, F. Numerical and Experimental Validation of Electromagnetic Time Reversal for Geolocation of Lightning Strikes. IEEE Trans. Electromagn. Compat. 2020, 62, 2156–2163. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Liu, B.; Shi, L.H.; Qiu, S.; Liu, H.Y.; Sun, Z.; Guo, Y.F. Three-Dimensional Lightning Positioning in Low-Frequency Band Using Time Reversal in Frequency Domain. IEEE Trans. Electromagn. Compat. 2020, 62, 774–784. [Google Scholar] [CrossRef]
- Instant Run of IRI2020. Available online: https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri (accessed on 21 January 2025).
- Phelps, A.V.; Pack, J.L. Electron Collision Frequencies in Nitrogen and in the Lower Ionosphere. Phys. Rev. Lett. 1959, 3, 340–342. [Google Scholar] [CrossRef]
Observation Stations | Time-Domain Waveforms | |
---|---|---|
NRMSE * | CC | |
S1 | 0.077 | 0.879 |
S2 | 0.064 | 0.928 |
S3 | 0.112 | 0.850 |
S4 | 0.116 | 0.903 |
S5 | 0.167 | 0.857 |
S6 | 0.101 | 0.948 |
S7 | 0.107 | 0.948 |
S8 | 0.133 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Sun, Z.; Duan, Y.; Chen, H.; Liu, Y.; Shi, L. A Novel Method for Single-Station Lightning Distance Estimation Based on the Physical Time Reversal. Remote Sens. 2025, 17, 2734. https://doi.org/10.3390/rs17152734
Zhao Y, Sun Z, Duan Y, Chen H, Liu Y, Shi L. A Novel Method for Single-Station Lightning Distance Estimation Based on the Physical Time Reversal. Remote Sensing. 2025; 17(15):2734. https://doi.org/10.3390/rs17152734
Chicago/Turabian StyleZhao, Yingcheng, Zheng Sun, Yantao Duan, Hailin Chen, Yicheng Liu, and Lihua Shi. 2025. "A Novel Method for Single-Station Lightning Distance Estimation Based on the Physical Time Reversal" Remote Sensing 17, no. 15: 2734. https://doi.org/10.3390/rs17152734
APA StyleZhao, Y., Sun, Z., Duan, Y., Chen, H., Liu, Y., & Shi, L. (2025). A Novel Method for Single-Station Lightning Distance Estimation Based on the Physical Time Reversal. Remote Sensing, 17(15), 2734. https://doi.org/10.3390/rs17152734